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This study aims to analyze poverty using spatial models. The researchers 

also compared the Spatial Error Model (SEM) and Geographically 

Weighted Regression (GWR). The comparison of the two models was 

based on the estimation evaluation criteria and the constructed spatial 

associations. Spatial regression is considered very appropriate to be used 

to model the relationship pattern between poverty and explanatory 

variables when the observed data has a spatial effect caused by the 

proximity between the observation areas. The spatial dependence of 

errors on observational data can be overcome using SEM, while the 

effect of heterogeneity of spatial variance can overcome using GWR. 

 

INTRODUCTION 

Poverty is one of the fundamental problems concerned by all countries in the world 

(Atkinson, 1987; Ferezagia, 2018; Nurwati, 2008), including Indonesia. Poverty can be 

overcome by correctly identifying the variables that have a real effect on poverty. The poverty 

of a region cannot be separated from the influence of the poverty of other regions around it. 

This problem requires special attention to spatial effects in modeling poverty data (Djuraidah 

& Wigena, 2012). Spatial regression is an approach that can be used to model spatial 

influence data, both spatial dependence and spatial heterogeneity (Anselin, 2009). 

Spatial Autoregressive (SAR) model and the Spatial Error Model (SEM) can be used on 

spatial dependency cases (Kelejian & Prucha, 2010; Lee & Yu, 2010). On the other hand, the 

Geographically Weighted Regression (GWR) model can be used on spatial heterogeneity 

cases.(Charlton et al., 2009). Based on these considerations, the poverty data for districts or 

cities in East Java can be modelled using the Spatial Regression Model. By applying the 

Spatial Regression Model in modelling the poverty data, a complete picture of the variables 

that affect poverty can be illustrated. 

Several research has been done on spatial modeling, whether it's SAR, SEM, and even 

those involving extreme values (Kelejian & Prucha, 2010; Lee & Yu, 2010; Putra et al., 2020; 

Rinaldi et al., 2017; Zhang et al., 2021). The GWR spatial model has also been studied and 

researched (Griffith, 2008; Zhou et al., 2019; Zhu et al., 2020). However, previous research 

was focused on separate modelling. Therefore, this study aims to examine the spatial models 

and compare the advantages of the models as a whole, even in analytical form. 
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METHODS 

In general, the form of the mean and variance functions for multiple regression is denoted as 

follows: 

𝑬(𝒀|𝑿) =  𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + ⋯ + 𝜷𝒑𝑿𝒑   (1) 

𝐕𝐚𝐫(𝐘|𝐗) = 𝛔𝟐 

𝛽𝑖 for 𝑖 = 0, 1, 2, … , 𝑝 or 𝜎2 are unknown parameters and must be estimated (Draper & 

Smith, 1998; Fox & Weisberg, 2018; Montgomery et al., 2021; Myers, 1990; Timm, 2002; 

Weisberg, 2013).  

 For example, for n observational data, the response variables and explanatory 

variables are defined in the form of vectors and matrices: 

𝐘 = (

y1

y2

⋮
yn

)     𝐗 = (

1 x11

1 x21

… x1p

… x2p

⋮ ⋮
1 xn1

⋱ ⋮
… xnp

) 

 

Y is a vector of n x 1 and X is a matrix of n x (p+1). The regression coefficient is denoted as 

𝜷, which is a vector of (p + 1) x 1, where e is a residual vector of (n 1). 

𝜷 = (

𝜷𝟎

𝜷𝟏

⋮
𝜷𝒑

)   𝒆 = (

𝒆𝟏

𝒆𝟐

⋮
𝒆𝒏

)  

The multiple regression matrix can be written as follows: 

𝒀 = 𝑿𝜷 + 𝜺       (2) 

Assuming the model: 𝜺 ~ 𝑵(𝟎, 𝝈𝟐𝑰𝒏) 

 The least squares method is used to estimate the parameters 𝜷 by minimizing the sum 

of the residual squares.  

𝑱𝑲(𝒆) =  ∑ 𝒆𝒊
𝟐 = ∑(𝒚𝒊 − �̂�𝒊)

𝟐 = ∑(𝒚𝒊 − 𝒙𝒊
′𝜷)𝟐 

 = (𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷) 

By deriving the above equation with the parameter 𝜷, the estimator will be: 

�̂� = (𝑿′𝑿)−𝟏(𝑿′𝒀) whereas for 𝑽𝒂𝒓(�̂�) = (𝑿′𝑿)−𝟏 

The assumptions in the classical regression model are: 

 

1. E(𝛆𝐢) = 0, for i = 1, 2, …, n; therefore, the expected value becomes: 

 

E(𝐲i) = β0+ β1𝐗i1+ β2𝐗i2+ …+βp𝐗ip  

 

2. Var(𝛆𝐢) = σ2, for i = 1, 2, …, n, or equal to Var(𝐲𝐢) = σ2  

 

3. Cov (𝛆𝐢, 𝛆𝐣) = 0, for i≠j.  

 

General Spatial Regression Model (GSM) 

The general model of spatial regression is: 

𝐘 = 𝛒𝐖𝐲 + 𝐗𝛃 + 𝐮      (3) 

𝐮 = 𝛌𝐖𝐮 + 𝛆       (4) 

𝛆~𝐍(𝟎, 𝛔𝟐𝐈) 
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y is the dependent variable of n × 1, X is the matrix of independent variables of (n x (p+1)), 𝛃  

is the vector of regression parameter coefficients of p × 1, ρ is a spatial lag autoregression 

coefficient, 𝜆 is an autoregression coefficient spatial error value of |𝜆| < 1, u is an error vector 

which is assumed to contain autocorrelation of n × 1, W is the spatial weighting matrix of n × 

n, n is the number of observations (Anselin, 2009; Blangiardo & Cameletti, 2015; LeSage & 

Pace, 2009). The estimation parameter in GSM model is obtained using maximum probability 

estimation method (Arbia & Baltagi, 2008; LeSage & Pace, 2009; Schabenberger & Gotway, 

2017). Based on equation (2), it can be expressed as:  

𝐲-ρ𝐖𝐲 = 𝐗β +𝐮 or  

I−ρ𝐖 𝐲 = 𝐗β +𝐮        (5)                                     

Equation (3) can be expressed as:                                                                                                       

(𝐈-λ𝐖) 𝐮 = ε or 𝐮 = (𝐈-λ𝐖)ε       (6)  

By substituting equation (6) into equation (5): 

(𝐈-ρ𝐖) 𝐲 = 𝐗β +(𝐈-λ𝐖)𝟏ε  

(𝐈-λ𝐖)𝟏ε = (𝐈-ρ𝐖) 𝐲-𝐗β  

If all sides are multiplied by (𝐈-λ𝐖), then:  

ε = (𝐈-λ𝐖) (𝐈-ρ𝐖) 𝐲-𝐗β     (7) 

The value of the probability function of the variable ε is:  

L (σ2; 𝛆) =c(𝛆)|𝐕|−𝟏/𝟐 exp [
−𝟏

𝟐𝝈𝟐 𝜺𝒕𝜺 ]     (8)  

Where V is the ε covariance matrix of 𝐕=σ2𝐈. The determinant of the matrix V is σ2n and the 

reciprocal of the covariance matrix of 𝐕-𝟏=1/(σ2𝐈). By substituting the value of |V| and 𝐕-𝟏 in 

equation (8), it is obtained that:  

L (σ2; 𝛆) =c(𝛆)σ2n exp [
−𝟏

𝟐𝝈𝟐 𝜺𝒕𝜺 ]    (9)  

From the ε and y relationship in equation (7), the Jacobian value is:  

J=|
𝝏𝜺

𝝏𝒚
|𝐈-λ𝐖| |𝐈-ρ𝐖|  

By substituting equation (7) into equation (9), the probability function for y will be: 

L (ρ, λ, σ2, 𝛃; 𝐲) =c(𝐲) (σ2) −n/2 |𝐈−λ𝐖| |𝐈−ρ𝐖|  

exp[−
𝟏

𝟐𝝈𝟐
{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]}𝑻{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]}]  

The log-likelihood function obtains the following equation (10): 

ln L (ρ, λ, σ2, 𝛃; 𝐲) = ln(c(𝐲)) – 𝑛/2 ln(σ2) + ln|I−λW| +ln|I−ρW|  

−
𝟏

𝟐𝝈𝟐
{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]}𝑻{(𝑰 − 𝝆𝑾)[(𝑰 − 𝝆𝑾)𝒚 − 𝑿𝜷]} 

 

Suppose the square of the weighting matrix (𝐈-ρ𝐖) (𝐈-ρ𝐖) is denoted as Ω and estimator β is 

obtained by maximizing the log probability function in equation (10), then the parameter 

estimator β is: 

�̂� = (𝐗′𝛀𝐗)−𝟏𝐗′𝛀(𝐈 − 𝛌𝐖)𝐘 
 

Spatial Lag Regression (SAR) Model 

 If ρ≠0 and λ=0, then equation (3) is the general form of the spatial regression model 

into a spatial lag regression model: 

𝐲= ρ𝐖𝐲 +𝐗𝛃+ 𝛆       (11)  

𝛆 ~ N (0, σ2I) 
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Response variables in the SAR model are spatially correlated. The maximum likelihood 

method can be used to estimate the parameters of this model (Lawson, 2013; Ver Hoef et al., 

2018; Zhang et al., 2021). In equation (11), εi is assumed to be normally distributed, 

stochastically free, identical, with a mean of zero, and a variance of σ2. εi is the error at the 

location of i. 

The probability density function of εi: 

f(εi)  =
1 

σ√2π
exp [−

εi
2

2σ2
]  

Joint probability density function of n random variables 1, 2,…, εn: 

f(𝛆) =f(ε1). f(ε2) …f(εn)  

= (2𝜋𝜎2)−
𝑛

2  exp (–
∑  𝑛

𝑖=1 𝜀𝑖
2

2𝜎2
)  

= (2𝜋𝜎2)−
𝑛

2  exp [−
εTε

2𝜎2
] 

The density function with the response variable y is obtained by transforming an n-

dimensional 𝛆 space into an n-dimensional y space. From equation (11), it is obtained that: 

𝛆=𝐲− ρ𝐖𝐲−𝐗𝛃  

The joint probability density function of n response variables y is: 

f(𝐲) = f(𝛆)|J|  

=exp [−
𝜀𝑇𝜀

2𝜎2] |
dε

dy
|  

= (2πσ2)−
𝑛

2  exp [–
(𝐲−ρ𝐖𝐲−𝐗𝛃)T(𝐲−ρ𝐖𝐲−𝐗𝛃 )

2σ2 ] |𝐈 − ρ𝐖|  

The probability function of the response variable y: 

L (𝛃, ρ, σ2; 𝐲) = f (𝐲; 𝛃, ρ, σ2)  

=|I−ρ𝐖|(2πσ2)−
𝑛

2  exp [–
(𝐲−ρ𝐖𝐲−𝐗𝛃)T(𝐲−ρ𝐖𝐲−𝐗𝛃 )

2σ2 ] |𝐈 − ρ𝐖|  (12)  

 

The estimation of the model parameters is obtained by maximizing the probability function 

which is equivalent to maximizing the logarithm of the probability function in equation (12). 

ln (L (𝛃, ρ, σ2; 𝐲) = ln {|𝑰 − 𝝆𝑾|(𝟐𝝅𝝈𝟐)−
𝒏

𝟐𝐞𝐱 𝐩 [–
(𝒚−𝝆𝑾𝒚−𝑿𝜷)𝑻(𝒚−𝝆𝑾𝒚−𝑿𝜷 )

𝟐𝝈𝟐 ] |𝑰 − 𝝆𝑾|} 

     = −
𝒏

𝟐
𝒍𝒏𝟐𝝅 −

𝒏

𝟐
𝒍𝒏𝝈𝟐 + 𝒍𝒏|𝑰 − 𝝆𝑾|–

(𝒚−𝝆𝑾𝒚−𝑿𝜷)𝑻(𝒚−𝝆𝑾𝒚−𝑿𝜷 )

𝟐𝝈𝟐   (13)  

 

The estimation for 2, β, and ρ is obtained by maximizing the log probability function in 

equation (13). The estimator for 2 is: 

�̂�𝟐 =
(𝒚−𝝆𝑾𝒚−𝑿𝜷)𝑻(𝒚−𝝆𝑾𝒚−𝑿𝜷 )

𝒏
       (14)  

Equation (14) can be written as: 

𝝈𝟐 = ∑
(𝒚𝒊−𝒚�̂�)𝟐

𝒏
=

𝑱𝑲𝑮

𝒏
  

Where yi is the response variable at location i, �̂�i is the estimator value of the dependent 

variable at location i, n is the number of observations, and JKG is the number of squared 

errors. Estimator for β is:  

�̂� =(𝐗T𝐗)-1𝐗T𝐲−(𝐗T𝐗)-1�̂�𝐖𝐲  

and the estimator for ρ is: 

�̂� =(𝐲T𝐖T𝐖𝐲) −1 𝐲T𝐖T𝐲 



Rinaldi, A., Susianto, Y., Santoso, B., & Kusumaningtyas, W.   

241 

 

2.4. Error Spatial Regression Model (SEM) 

If ρ=0 and λ≠0, then equation (3) which is the general form of the spatial regression model 

becomes the form of the spatial error regression model which can be written as: 

𝒚 = 𝑿𝜷 + 𝒖, 𝒖 = 𝝀𝑾𝒖 + 𝜺      (15) 

 where is assumed 𝜺~𝑵(𝟎, 𝝈𝟐𝑰) 

The spatial error model is a linear regression model in which the error variable has a 

spatial correlation due to the existence of explanatory variables that are not included in the 

linear regression model. Therefore, it will be calculated as an error and that variable is 

spatially correlated with errors in other locations. The spatial error parameters model can be 

estimated using the maximum likelihood method (Anselin & Florax, 2012; Anselin & 

Kelejian, 1997; Baltagi & Li, 1997).  

The probability density function of 𝛆𝐢:  

f(εi) = 
1

σ√2π
exp [−

εi
2

2σ2] 

Joint probability density function of n random variables 1, 2…, n 

f(𝛆) =f(ε1). f(ε2) …f(εn)  

= (2πσ2)−
n

2  exp (–
∑  n

i=1 εi
2

2σ2
)  

= (2πσ2)−
n

2  exp [−
εTε

2σ2] 

The density function with the response variable y is obtained by transforming an n-

dimensional 𝛆 space into an n-dimensional y space. From equation (15), it can be obtained: 

𝐮=𝐲−𝐗𝛃 dan  

𝛆= (I− λ𝐖𝐮) 𝐮  

Therefore, 𝛆= (𝐈− λ𝐖𝐮) (𝐲−𝐗𝛃) 

The joint probability density function of n response variables y: 

f(𝐲) = f(𝛆)|J|  

=(2𝜋𝜎2)−
𝑛

2 exp [−
𝜀𝑇𝜀

2𝜎2] |
dε

dy
|  

= (2𝜋𝜎2)−
𝑛

2  exp [−
[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2   ] |𝐈 − λ𝐖| 

The probability function of the variable y: 

L (𝛃, λ, σ2; 𝐲) = f(𝐲; 𝛃 , λ, σ2 ) 

=(2𝜋𝜎2)−
𝑛

2  |I − λW| exp [− 
[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2 ]  (16) 

The logarithm of the probability function above is: 

ln (L (𝛃, λ, σ2; 𝐲)  

= ln{(2𝜋𝜎2)−
𝑛

2  |I − λW| exp [− 
[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2 ]}  

= −
n

2
ln2π −

n

2
lnσ2 + ln |I − λW|  −  

[(𝐈− λ𝐖)(𝐲−𝐗𝛃 )]T[ (𝐈− λ𝐖)(𝐲−𝐗𝛃)]

2σ2  (17) 

The estimation for σ2, 𝛃 and λ is obtained by maximizing the log-likelihood function in 

equation (17). 

The estimator for σ2 is: 

σ̂2 =
[(𝐈 − λ𝐖)(𝐲 − 𝐗�̂�)]

T
(𝐈 − λ𝐖)(𝐲 − 𝐗�̂�)]

n
   

The estimator for 𝛃 is: 
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�̂� = [(𝐗 − �̂�𝐖𝐗)
𝐓

(𝐗 − �̂�𝐖𝐗 )]−𝟏 (𝐗 − �̂�𝐖𝐗)
𝐓

(𝐲 − �̂�𝐖𝐲)  

To estimate the 𝜆 parameter, a numerical iteration is needed to get an estimator for 𝜆 that 

maximizes the probability log function (Bivand et al., 2008). 
 

2.5. Spatial Weighted Regression Model (GWR) 

The GWR model equation is: 

𝐲𝐢 = 𝛃𝟎(𝐮𝐢, 𝐯𝐢) + ∑ 𝛃𝐤(𝐮𝐢, 𝐯𝐢)𝐱𝐢𝐤 + 𝛆𝐢
𝐩
𝐤=𝟏    (18) 

Where (ui, vi) represents the coordinates (longitude, latitude) of the i-th location. 

The GWR parameters can be estimated using the weighted least squares approach (Griffith, 

2008; Tasyurek & Celik, 2020; Zhu et al., 2020), obtained: 

�̂�(𝐮𝐢, 𝐯𝐢) = [𝐗𝐓𝐖(𝐮𝐢, 𝐯𝐢)𝐗]−𝟏𝐗𝐖(𝐮𝐢, 𝐯𝐢)𝐲 

𝐖(𝐮𝐢, 𝐯𝐢) is a diagonal weighting matrix of n x n, where the diagonal element is the 

weighting of the i-th location whose value is determined by the distance between observation 

locations based on coordinates (longitude, latitude). 

The initial stage of GWR modeling is to determine the optimum bandwidth value that 

minimizes the value of cross validation (CV). 

𝐂𝐕 = ∑[𝐲𝐢 − �̂�≠𝐢(𝐛)]𝟐

𝐧

𝐢=𝟏

 

In this study, the weighting function used is the Gaussian kernel function: 

𝐖(𝐮𝐢, 𝐯𝐢) = 𝐞𝐱𝐩 [−
𝟏

𝟐
(

𝒅𝒊𝒋

𝒃
)

𝟐

] 

dij: Distance between i-th and j-th 

b: Optimum bandwidth. 

The Analysis of Variance (ANOVA) is used to determine the effectiveness of the GWR 

model on classical regression. 
 

2.6. Model Assumption Test 

To check the assumptions of the first model, the Kolmogorov Smirnov statistical test is used 

(Lilliefors, 1967). 

Several test methods can be used to determine the spatial effects (spatial dependence 

and spatial diversity on the data). In this study, the spatial dependence test used the Lagrange 

multiplier test, while the Breusch-Pagan test was used to test the spatial diversity. The spatial 

dependence is tested by the Lagrange Multiplier test (Anselin, 1988).  

The Lagrange Multiplier (LM) statistic: 

LM = E-1 {(Ry)2T – 2RyReT+ (D+T)} ~ 𝜒2
(𝑞) 



Rinaldi, A., Susianto, Y., Santoso, B., & Kusumaningtyas, W.   

243 

 

Where:  

𝐑𝐲: 𝐞T𝐖𝐲/ σ2  

𝐑𝐞: 𝐞T𝐖e/ σ
2  

𝐌: I−(𝐗T𝐗)-1𝐗T  

Tij: tr {𝐖i𝐖j+ 𝐖i
T 𝐖j}  

D: σ−2(𝐖𝐗𝛃) T M (𝐖𝐗𝛃)  

E: (D+T) T− (T)2  

q: Number of spatial parameters  

T = tr {(WT +W) W}  

LM test criteria:  {
≤  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

>  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅 
 

 

To test the spatial diversity, the Breusch-Pagan  test is used (Breusch & Pagan, 1979). 

The tested hypotheses are: 

H0∶ σ1
2= σ2

2=⋯= σn
2= σ2 (same variance) 

H1: There is at least one σi
2 ≠ σ2 (there is variation between regions) 

The Breusch-Pagan (BP) test statistic is: 

BP= (1/2) 𝐡T𝐙 𝐙T𝐙−1𝐙T𝐡~ χ2
(p)  

The vector element h is: 

ℎ𝑖 = (
𝑒𝑖

2

𝜎2
) − 1  

ei is the square of the error for the i-th observation and Z is the y vector of n × 1 that has 

been standardized for each observation.  

BP test criteria {
≤  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒂𝒄𝒄𝒆𝒑𝒕𝒆𝒅

>  𝛘𝟐(𝐪), 𝐇𝟎 𝒊𝒔 𝒓𝒆𝒋𝒆𝒄𝒕𝒆𝒅 
 

 

RESULTS AND DISCUSSION 

The classical regression model is an appropriate approach when the observed responses are 

independent and normally distributed. This model can be used to model poverty data based on 

the percentage of poor people as the response variable that has a normal distribution as 

indicated by the significance value (p-value) of the Kolmogorov-Smirnov, which is greater 

than 0.05 (Figure 1). Therefore, at the initial stage, the classical regression model is used to 

see how well this model explain the pattern of the relationship between the responses, namely 

the percentage of poor people (y) and the explanatory variables consisting of the open 

unemployment rate (x1), the percentage of the illiterate population (x2), the percentage of the 

population working in the informal sector (x3), the maximum education level is junior high 

school/equivalent (x4), the underemployment rate (x5), the gross regional domestic product of 

primary sector (x6), and income inequality of Gini coefficient (x7).  
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Figure 1. The Normality Test of the Variable Percentage of Poor Population Using Kolmogorov-

Smirnov 
 

Furthermore, based on the results of the model estimation parameters (Table 1), this 

model can explain 80% of the percentage diversity of the poor indicated by an R2 value of 

0.80. However, judging from the significance value of the t-test, only two of the seven 

explanatory variables that have significant relationship at 0.05, namely the percentage of the 

illiterate population (x2) and the underemployment rate (x5). Besides, multicollinearity 

presents among the explanatory variables as indicated by the VIF of the percentage of the 

population working in the informal sector whose value is more than 10. This result shows that 

the classical regression model with seven explanatory variables is not the best model. 
 

Table 1. Alleged Classical Regression Model with Six Explanatory Variables 

Explanatory  

Variables Coefficient    Standard Error       tobserved         p-value       VIF 

Constant       9.508     9.816    0.97  0.340 

x1           -0.251    0.903  -0.28  0.783    2.1 

x2            0.512    0.134    3.83  0.001**    3.8 

x3           0.026  0.098    0.27  0.789  13.4 

x4           -0.006    0.110  -0.05  0.957    9.2 

x5           0.209  0.095    2.19  0.036*  6.4 

x6          -0.104  0.074  -1.41  0.170    7.5 

x7            -19.900     18.160  -1.10  0.282    1.6 

R2: 0.800         R2(adj): 0.753 

Significance * 0.05 ** 0.01 

At the next stage, the best regression model was selected using the Backward method (see 

Appendix 3). Based on the best selected classical regression model, two explanatory variables 

that had significant effects were the percentage of the illiterate population (x2) and the 

underemployment rate (x5). By using only two explanatory variables, this model can explain 

77.8% of the dependent variable variability. The remaining 22.2% was explained by other 

variables outside the model. Since the VIF of each variable below 10, the two independent 

variables that build this model were also free from multicollinearity. 
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Table 2. The Best Classical Regression Model with Two Explanatory Variables 

Explanatory 

Variable Coefficient Standard Error     t0bserved P-value VIF 

Constant 3.102  1.379  2.25  0.031* 

x2  0.490  0.117  4.19  0.000**  3.0 

x5  0.158  0.064  2.47  0.019* 3.0 

R2: 0.778          R2(adj): 0.765          AIC :192.41  

Significance * 0.05 ** 0.01 
 

Classical Assumption Test 

After obtaining the best classical regression model, it was necessary to test the model 

assumptions to see the feasibility of the model. The tests consisted of the normality of error, 

freedom of error, and homogeneity of variance error. The normality of error was estimated 

using the Kolmogorov-Smirnov test (Figure 2), where the significance value was above 0.15. 

The result indicated that the error distribution had met the normality assumption. 

 

 
Figure 2. The Normality of Error Test on the Best Classical Regression Model Using Kolmogorov-

Smirnov 
 

The freedom of error was tested using the Durbin Watson (DW) test. The obtained DW 

value was 1.55 with a significance value of 0.05. This result shows that the freedom of error 

assumption of the classical regression was not fulfilled. On the other hand, the Breusch-Pagan 

(BP) statistic values of 6.42 and 0.04 indicated that there was a violation of the assumption of 

homogeneity variance error. Since it does not fulfill some of the assumptions, the classical 

regression model is not considered appropriate for modeling poverty of East Java’s cities and 

regencies. 
 

1. Spatial Regression Model 

Identifying Spatial Influence 

The assumption violation of the freedom of error and the homogeneity of variance error in 

classical regression of regional observations shows that there is a spatial influence on spatial 

dependence and spatial heterogeneity that have not been handled in the model. 

Moran Index statistic is used to generally identify spatial dependence. Based on 

Appendix 4, the Moran Index statistic value is 0.0978 with a significance value of 1.341e-05. 

This result shows that there is a spatial dependence of the poor people percentage in adjacent 
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areas. This spatial dependence is also supported by the local Moran Index statistics (Appendix 

5) and the Moran Index’s scatter diagram plot (Appendix 6). 

Slightly different from the Moran Index, the Lagrange Multiplier (LM) test is used to 

identify spatial dependencies, either the spatial dependence in lag or error. From the results of 

the LM test (Table 3), the statistical significance value of the LM-SEM model (LMerr) is 

0.028. It indicates that there is a spatial dependence of error, so that the formation of the SEM 

model can be done. Furthermore, the statistical significance values of LM-SAR model 

(LMerr) and GSM model are more than 0.05, which indicates that there is no spatial lag 

dependence or the combination between error and lag. Therefore, there is no need to build 

SAR and GSM models. 
  

Table 3. Spatial Dependency Test with Lagrange Multiplier 

Model  Statistics    Parameter           P-value 

LMerr      4.858              1                  0.028 * 

LMlag                1.997              1                  0.158 

GSM                  4.859              2                  0.088 

Significance * 0.05 
 

2. Spatial Error Regression Model (SEM) 

The Estimation of SEM Model Parameters 

SEM model is a spatial approach to overcome spatial effects, especially error dependence. 

This model can handle the dependence of error, as shown by the coefficient of 0.828, which is 

higher than the coefficient of determination of the classical regression model (Table 4). 

Besides explaining 82.8 percent of the variance in the percentage of poor people, this model’s 

AIC and log likelihood are lower than the classical regression model (187.83 and -88.92). By 

judging the estimated model parameters, all SEM parameters are at the significant level of 

0.05. In other words, the two explanatory variables (the percentage of the illiterate population 

and the underemployment rate) statistically have significant influences on the percentage of 

the poor population. 
 

Table 4. Estimated Parameters of the SEM Model with Two Explanatory Variables 

Explanatory 

Variables 
Coefficient 

Error 

Standard 
Z-value P-value 

Konstanta 3.249 1.278 2.54 0.011* 

x2 0.488 0.121 4.05 0.000* 

x5 0.151 0.057 2.62 0.009* 

Lambda 0.339 0.108 3.14 0.002* 

R2: 0.828         AIC: 187.83         

Significance * 0.05 ** 0.01 
 

SEM Model Assumption  

Similar with the classical regression model, several classical assumptions must also be met in 

the SEM model, including the normality of error, freedom of error, and homogeneity of 

variance of error. Based on the error distribution plot of the SEM model (Figure 3), this 

model’s Kolmogorov-Smirnov statistical significance value is greater than 0.15. Therefore, 

the SEM error flfills the normality assumption. 
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Figure 3. The Normality Test on SEM model error with Two Explanatory Variables using 

Kolmogorov-Smirnov 
 

The examination of the assumption of freedom on SEM model error can be seen from 

the Moran Index statistics, which is 0.065 and the significance value of 0.474. It means that 

SEM model error fulfills the assumption of freedom or there is no spatial dependence. 

Besides, the Breusch-Pagan statistic’s value is 4.31 with a significance value of 0.116. It 

indicates that the SEM model error has fulfilled the assumption of homogeneity of variance 

error. 

By fulfilling several classical assumptions, the SEM model with two explanatory 

variables is considered capable of overcoming the spatial effects, both error dependence and 

heterogeneity of variance error. Thus, this model is suitable to model East Java’s poverty data. 
 

3. Geographically Weighted Regression Model (GWR) 

GWR Model Parameter Estimation 

Geographically Weighted Regression Model or GWR is an approach to overcome the variety 

of errors caused by spatial influences. GWR is basically a development of the classical 

regression model into a geographically weighted regression model. The classical regression 

model produces estimates of global parameters that are generally applicable to all observed 

locations. However, the GWR model produces local parameter estimates in each observed 

location. 

The initial stage of GWR modeling is to determine the optimum bandwidth value that 

minimizes the cross validation (CV) value using the Gaussian Kernel weighting function. 

After a certain number of iterations, the minimum CV is 269.42 and the optimum bandwidth 

is 0.4584. With this optimum bandwidth value, the parameter estimation of the GWR model 

is carried out. The summary of the estimated results is displayed in Table 5. 
 

Table 5. The Summary of GWR Model Parameter Estimates 

Variable Min.  1st Qu.  median   3rd Qu.     Max.          Global 

Konstanta           0.637             2.605          3.016         4.055         13.590         3.102 

x2             0.280             0.532          0.580         0.659           0.774         0.490 

x5                      -0.325             0.099          0.143         0.165           0.266         0.159 

R2: 0.904         AIC: 163.81        
 



Rinaldi, A., Susianto, Y., Santoso, B., & Kusumaningtyas, W.   

248 

 

Based on the Anova analysis on the effectiveness of the GWR model on the classical 

regression model (Table 6), a significance value of 0.026 was obtained. It means that the 

Geographically Weighted Regression model is more effective in describing the relationship 

between the response variables and the explanatory variables. 
 

Table 6. The Effectiveness Variance Analysis of the GWR on Classical Regression 

Sources                                  df           SS            MS          Fobserved          P-value 

OLS Residuals               3.000      285.01                 

GWR Improvement            11.807     162.21     13.739         

GWR Residuals                  23.193     122.80       5.295        2.595           0,026 
 

GWR Model Assumption Check 

Kolmogorov Smirnov's statistical significance value of the GWR error is greater than 0.15. It 

means that the GWR error has fulfilled the normality assumption. 

 

 
Figure 4. The Normality Test of GWR Model Error with Two Explanatory Variables Using 

Kolmogorov-Smirnov 
 

The assumption of freedom of the SEM model error can be seen from the Moran Index 

statistics. The result of the calculation is 0.065 with a significance value of 0.474. It means 

that the SEM model error fulfills the assumption of freedom or there is no spatial dependence. 

Furthermore, the Breusch-Pagan statistic’s value is 4.31 with a significance value of 0.116. It 

indicates that the SEM model error has met the assumption of homogeneity of variance. 
 

4. The Comparison of Classical Regression Model, SEM, and GWR 

The coefficient determination value of the GWR model is higher than the classical regression 

model and SEM. It indicates that this model is better in explaining the poor people percentage 

diversity as a response than the classical regression model and the SEM model. Also, the 

GWR model’s low AIC statistics indicates that this model can reduce the spatial effect of the 

data observed regionally. 
 

CONCLUSIONS 

Based on the results and discussions, the following conclusions can be drawn: 1) the spatial 

regression approach is considered very appropriate to be used to model the relationship 

pattern between the response and the explanatory variables when the observed data has a 
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spatial effect caused by the proximity between the observation areas; 2) The effect of spatial 

dependence of error on observational data can be overcome by using the Spatial Error 

Regression Model (SEM), while the effect of spatial variance heterogeneity can be overcome 

by the Geographically Weighted Regression model (GWR). 

If the spatial dependence and spatial heterogeneity influence the observation data 

simultaneously, a hybrid model from several models is considered worthy to be applied. In 

the case when the observation data has the effect of dependence and spatial heterogeneity at 

the same time, the use of a hybrid model from the SEM and GWR models is recommended 

for further research. 
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