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Let 𝑅 be a ring, (𝑆, +, ≤) a strictly ordered monoid, and K, L, M are R-modules. 

Then, we can construct the Generalized Power Series Modules (GPSM) K[[S]], 

L[[S]], and M[[S]], which are the module over the Generalized Power Series 

Rings (GPSR) R[[S]]. In this paper, we investigate the property of X[[S]]-sub-

exact sequence on GPSM L[[S]] over GPSR R[[S]]. 
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Introduction 
 

A non-empty set of 𝑆 with an associative binary "∗" is called a semigroup. If 𝑆 has an 

identity element, then (𝑆,∗) is called a monoid. Furthermore, if each element of 𝑆 has an inverse, 

then (𝑆,∗) is called a group (Howie 1995). A ring (𝑅,+,∙) is a non-empty set of R with two binary 

operations.  (R,+) is a commutative group, (R,∙) a semigroup, and satisfies the left and right 

distributive laws (Adkins and Weintraub 1992). 

One example of a ring is the polynomial ring 𝑅[𝑋], which is defined as the set of all 

functions from non-negative integers ℕ⋃{0} to ring R with finite support. Furthermore, this ring 

is generalized into the power series ring 𝑅[𝑋] by removing the finite support conditions 

(Hungerford 1974). Furthermore, the polynomial ring 𝑅[𝑋] can be generalized by changing its 

function domain to any 𝑆 semigroup. This ring is then known as the semigroup ring and is 

denoted by 𝑅[𝑆] (Gilmer 1984). 

A partially ordered relation is a binary relation " ≤ "  on a non-empty set of 𝑆 that fulfills 

reflexive, anti-symmetric, and transitive properties. Furthermore, (𝑆,≤) is called a partially 

ordered set. An order " ≤ " is said to be trivial if for any 𝑠, 𝑡 ∈ 𝑆, 𝑠 ≤ 𝑡 results in 𝑠 = 𝑡 and is 

said to be strictly ordered if (∀𝑥, 𝑦, 𝑠 ∈ 𝑆)(𝑥 < 𝑦 → 𝑥 + 𝑠 < 𝑦 + 𝑠). Furthermore, (𝑆,≤) is said 

to be Artinian if it does not contain any infinite strictly decreasing sequence 𝑠1 > 𝑠2 > 𝑠3 > ⋯, 

and is said to be narrow if it does not contain an infinite subset consisting of pairwise 

incomparable elements. (Elliott and Ribenboim 1990).  

By using the Artinian and narrow partially ordered set concept, ring semigroup R[S] can 

be generalized into a Generalized Power Series Ring (GPSR) by weakening the finite support 

condition that became Artinian and narrow. Furthermore, this ring is denoted by 𝑅[[𝑆, ≤]] or 

abbreviated as 𝑅[[𝑆]] (Ribenboim 1990). Furthermore, the research results relating to the 

properties that apply in GPSR can be seen in ((Ribenboim 1991), (Ribenboim 1992), (Priess-

Crampe and Ribenboim 1993),  (Benhissi and Ribenboim 1993), (Ribenboim 1994), (Ribenboim 

1995).   

Furthermore, the structure of GPSR 𝑅[[𝑆]] can be generalized by applying a monoid 

homomorphism 𝜔: 𝑆 → End(𝑅) to the convolution multiplication operation (Mazurek and 

Ziembowski 2007). This ring is called the Skew Generalized Power Series Ring (SGPSR), and 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1267414024&1&&
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it is denoted by 𝑅[[𝑆, 𝜔]]. The properties related to the structure of SGPSR 𝑅[[𝑆, 𝜔]] can be seen 

in ((Mazurek and Ziembowski 2008); (Mazurek and Ziembowski 2009); (Mazurek and 

Ziembowski 2010), (Faisol 2009), (Faisol 2013), (Faisol 2014), (Faisol, Surodjo, and Wahyuni 

2016), (Faisol, Surodjo, and Wahyuni 2018), (Faisol and Fitriani 2019). 

It is known that a ring can be seen as a module over itself. Based on this, we can form the 

Generalized Power Series Module (GPSM) 𝑀[[𝑆]], which is a module over GPSR 𝑅[[𝑆]] where 

𝑀 is a module over the ring 𝑅 (Varadarajan 2001a). In addition to the GPSM 𝑀[[𝑆]] structure, 

the necessary and sufficient conditions of 𝑀[[𝑆]] to be Noetherian module over 𝑅[[𝑆]] can be 

seen in (Varadarajan 2001b). Furthermore, the generalization of Noetherian property on GPSM 

𝑀[[𝑆]] can be seen in (Faisol, Surodjo, and Wahyuni 2019a), which is about the necessary and 

sufficient conditions of GPSM 𝑀[[𝑆]] is a 𝑇[[𝑆]]-Noetherian module. This is obtained by 

generalizing the necessary and sufficient conditions for the polynomial module 𝑀[[𝑋]] to be 

𝑆[𝑋]-Noetherian module over polynomial ring 𝑅[𝑋] (Faisol, Surodjo, and Wahyuni 2019c), and 

applies the relationship between almost generated module, almost Noetherian module and 𝑇-

Noetherian module (Faisol, Surodjo, and Wahyuni 2019b).  

The Noetherian properties of an 𝑅-module 𝑀 can be investigated through an exact 

sequence. If there is an exact sequence 𝐴
𝑓
→𝐵

𝑔
→𝐶 where 𝐴 and 𝐶 are Noetherian, then 𝐵 is a 

Noetherian 𝑅-module (Wisbauer 1991). The generalization of the exact sequence in the 𝑅-

module is investigated by (Davvaz and Parnian-Garamaleky 1999). This result is obtained by 

replacing submodule 0 with submodule U ⊆ C, called the U-exact sequence. Another study 

related to the properties of the U-exact sequence can be seen in ((Davvaz and Shabani-Solt 2002) 

(Anvariyeh and Davvaz 2005)). 

Motivated by the U-exact sequence definition, the X-sub-exact sequence concept was 

introduced in (Fitriani, Surodjo, and Wijayanti 2016), which is a generalization of the exact 

sequence. Besides that, the generalization of an R-module generator to become a U-generator 

has been reviewed in (Fitriani, Wijayanti, and Surodjo 2018b). Furthermore, by using the concept 

of sub-linearly independent modules (Fitriani, Surodjo, and Wijayanti 2017), a basis and free 

module relative to a family of modules over R can be defined (Fitriani, Wijayanti, and Surodjo 

2018a).  

It was explained earlier that Varadarajan determines the necessary and sufficient conditions 

of GPSM M[[S]] is a Noetherian R[[S]]-module; this will be easier to do using the exact sequence 

concept. Therefore, this motivates us to study the exact sequence of R[[S]]-modules and construct 

X[[S]]-sub-exact sequence on GPSM M[[S]]. Besides, this also provides an opportunity to 

investigate the properties that satisfy them.  
 

The Research Methods 
 

The research methods are based on the study of literature. They relate to the concept of 

partially ordered set, strictly ordered monoid, Artinian and narrow properties, generalized power 

series rings (GPSR), generalized power series modules (GPSM), exact-sequences, and X-sub-

exact sequences. The results of this study obtained by constructing the exact sequence and 

X[[S]]-sub-exact sequence over an R[[S]]-module, as well as investigating the properties that 

apply in it. 

 

 

 



Al-Jabar: Jurnal Pendidikan Matematika Volume 11 Nomor 02                            Wesly Agustinus Pardede,  etc 

301 

 

The Results of the Research and the Discussion 
 

Before discussing the definition and properties of the X[[S]]-sub-exact sequence, the 

following is explained about the structure of GPSM M[[S]] over GPSR R[[S]] ] as well as the 

exact and X-sub-exact sequence definition, which have been explained in ((Ribenboim 1990), 

(Varadarajan 2001a), (Wisbauer 1991), dan (Fitriani et al. 2016)). 

We were given a strictly ordered monoid (𝑆,+,≤) and commutative ring R with unit 

element 1. Next, is defined as the set 𝑅[[𝑆]] = { 𝑓: 𝑆 → 𝑅 |supp(𝑓) Artin dan 𝑛𝑎𝑟𝑟𝑜𝑤}, with 

supp(𝑓) = {𝑠 ∈ 𝑆| 𝑓(𝑠) ≠ 0}. Against the operation of the addition function:  

(𝑓 + 𝑔)(𝑠) = 𝑓(𝑠) + 𝑔(𝑠)  

and convolution multiplication operations:  

(𝑓 ∙ 𝑔)(𝑠) = ∑ 𝑓(𝑡)𝑔(𝑢),

𝑡+𝑢=𝑠

 

for each  𝑠 ∈ 𝑆, 𝑡 ∈ supp(𝑓), 𝑢 ∈ supp(𝑔) and  𝑓, 𝑔 ∈ 𝑅[[S]], it can be shown (𝑅[[𝑆]], +,∙) is a 

ring. Furthermore, this ring is called the Generalized Power Series Ring (GPSR).  

Furthermore, if given an R-module M, then the set M[[𝑆]] = { 𝛼: 𝑆 →

𝑀|supp(𝛼) Artin dan 𝑛𝑎𝑟𝑟𝑜𝑤} can be formed. Against the operation of the addition function :  

(𝛼 + 𝛽)(𝑠) = 𝛼(𝑠) + 𝛽(𝑠)  

and scalar multiplication operations:  

(𝛼 ∙ 𝑓)(𝑠) = ∑ 𝛼(𝑡)𝑓(𝑢),

𝑡+𝑢=𝑠

 

for each 𝑠 ∈ 𝑆, 𝑡 ∈ supp(𝛼), 𝑢 ∈ supp(𝑓),  𝑓 ∈ 𝑅[[S]], and 𝛼, 𝛽 ∈ 𝑀[[S]],  it can be shown that 

M[[S]] is an R[[S]]-module. This module is called the Generalized Power Series Module 

(GPSM).   

The following is the definition of the exact sequence and X-sub-exact sequence over an R-

modules. Let R be a ring and 𝑀𝑖 an R-module for each i. R-module sequence 

… → 𝑀𝑖−1
𝑓𝑖
→𝑀𝑖

𝑓𝑖+1
→  𝑀𝑖+1 → ⋯ 

is said to be exact in 𝑀𝑖 if there are R-homomorphism 𝑓𝑖 and 𝑓𝑖+1 that satisfies 𝐼𝑚 (𝑓𝑖) =

Ker(𝑓𝑖+1). The sequence is said to be exact if it is exact at every 𝑀𝑖.  

Furthermore, this exact sequence is generalized to the X-sub-exact sequence. Suppose K, 

L, M are modules over R and X is a submodule of L. Triple (K, L, M) is said to be X-sub-exact 

over L if there are R-homomorphism f and g such that the sequence 𝐾
𝑓
→ 𝑋

𝑔
→𝑀 is the exact 

sequence over R-modules. 

Next, all submodules X of L can be collected, so the triple (K, L, M) is X-sub-exact over L. 

Furthermore, this set is denoted by 𝜎(𝐾, 𝐿,𝑀). In other words, σ 𝜎(𝐾, 𝐿, 𝑀) = {𝑋 ≤

𝐿|(𝐾, 𝐿,𝑀) 𝑋-sub-exact over L}. 

Now, we define the exact sequence of GPSR.  

 

Definition 1. Let 𝑅 be a ring, (𝑆, ≤) a strictly ordered monoid, and 𝑀𝑖 modules over R for every 

i. Given GPSR 𝑅[[S]] and GPSM 𝑀𝑖[[S]].  An 𝑅[[S]]-module sequence  

… → 𝑀𝑖−1[[S]]
𝜇𝑖
→𝑀𝑖[[S]]

μ𝑖+1
→  𝑀𝑖+1[[S]] → ⋯ 

is said to be exact in 𝑀𝑖[[S]] if there are 𝑅[[𝑆]]-homomorphisms μ
𝑖
 and μ

𝑖+1
  that satisfy 

Im(𝜇𝑖) = Ker(𝜇𝑖+1). Furthermore, this sequence is said to be exact if it is exact at every 𝑀𝑖[[S]].   
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It is known that, if X is the submodule of M over R, then the set 𝑋[[𝑆]] =

{𝛼 ∈ 𝑀[[𝑆]]|𝛼(𝑠) ∈ 𝑋;∀𝑠 ∈ 𝑆} is the submodule of M[[S]] over R[[S]]. The following is the 

definition of X[[S]]-sub-exact sequence of GPSR.  

 

Definition 2. Let 𝑅 be a ring, (𝑆,≤) a strictly ordered monoid, and K, L, M are the modules over 

R. Given GPSR 𝑅[[S]] and GPSM K[[S]], L[[S]] and M[[S]]. If 𝑋 is a submodule of L, the triple 

(𝐾[[𝑆]], 𝐿[[𝑆]],𝑀[[𝑆]]) is said to be  𝑋[[𝑆]]-sub-exact over R[[S]] if there are R[[S]]-

homomorphisms 𝜇 and 𝜌 so that the sequence 𝐾[[𝑆]]
μ
→𝑋[[S]]

ρ
→M[[S]]  is the exact sequence 

over R[[S]]. 

 

Based on Definition 2, we can set all R[[S]]-submodules 𝑋[[𝑆]] of 𝐿[[𝑆]] so that triple 

(𝐾[[𝑆]], 𝐿[[𝑆]],𝑀[[𝑆]]) is 𝑋[[𝑆]]-sub-exact  over R[[S]]. This set is then denoted by 

𝜎(𝐾[[𝑆]], 𝐿[[𝑆]],𝑀[[𝑆]]) or written as 𝜎(𝐾[[𝑆]], 𝐿[[𝑆]],𝑀[[𝑆]]) = {𝑋[[𝑆]] ≤

L[[S]]|(𝐾[[𝑆]], 𝐿[[𝑆]],𝑀[[𝑆]])  is 𝑋[[S]]-sub-exact over R[[S]]}. 

Next, the X[[S]]-sub-exact characteristics of GPSR are given as the main results in this 

study. 

 

Proposition 3. For 𝑖 = 1, 2,  let 𝐾𝑖 , 𝐿𝑖, 𝑀𝑖 are the modules over R, 𝑋𝑖 a submodule of 𝐿𝑖,  and  

(𝑆,≤) a strictly ordered monoid. If 𝑋1[[S]] ∈ 𝜎(𝐾1[[𝑆]], 𝐿1[[𝑆]], 𝑀1[[𝑆]]) and 𝑋2[[S]] ∈

𝜎(𝐾2[[𝑆]], 𝐿2[[𝑆]],𝑀2[[𝑆]]), then 𝑋1[[S]] × 𝑋2[[S]] ∈ 𝜎(𝐾1[[𝑆]] × 𝐾2[[𝑆]], 𝐿1[[𝑆]] ×

𝐿2[[𝑆]],𝑀1[[𝑆]] × 𝑀2[[𝑆]]). 

 

Proof: Because it is known that 𝑋1[[S]] ∈ 𝜎(𝐾1[[𝑆]], 𝐿1[[𝑆]],𝑀1[[𝑆]]) and 𝑋2[[S]] ∈

𝜎(𝐾2[[𝑆]], 𝐿2[[𝑆]],𝑀2[[𝑆]]),  then clearly there is  𝑅[[𝑆]]-homomorphism 𝜇1, 𝜌1, 𝜇2, and 𝜌2 so 

that 𝐾1[[S]]
𝜇1
→ 𝑋1[[𝑆]]

𝜌1
→𝑀1[[S]] and 𝐾2[[S]]

𝜇2
→ 𝑋2[[𝑆]]

𝜌2
→𝑀2[[S]] are exact sequences.  

Next is defined function  𝜇: 𝐾1[[S]] × 𝐾2[[S]]  →  𝑋1[[𝑆]] × 𝑋2[[𝑆]], where 𝜇((α1, α2)) =

(𝜇1(α1), 𝜇2(α2)), for each (α1, α2) ∈ 𝐾1[[S]] × 𝐾2[[S]] and 𝜌: 𝑋1[[S]] × 𝑋2[[S]]  →  𝑀1[[𝑆]] ×

𝑀2[[𝑆]], where 𝜌 ((β1, β2)) = (𝜌1(β1), 𝜌2(β2)), for each (β1, β2) ∈ 𝑋1[[S]] × 𝑋2[[S]].  

Based on the definitions of the functions 𝜇 and 𝜌, it can be shown easily that the functions 

𝜇 and 𝜌 are R[[S]]-homomorphisms. Therefore, the sequence 𝐾1[[S]] × 𝐾2[[S]]  
𝜇
→ 𝑋1[[𝑆]] ×

𝑋2[[𝑆]]
𝜌
→ 𝑀1[[𝑆]] × 𝑀2[[𝑆]] is an exact sequence. In other words,  𝑋1[[S]] × 𝑋2[[S]] ∈

𝜎(𝐾1[[𝑆]] × 𝐾2[[𝑆]],  𝐿1[[𝑆]] × 𝐿2[[𝑆]], 𝑀1[[𝑆]] × 𝑀2[[𝑆]]).        

 

As a direct result of Proposition 3, the following properties are obtained for a set of indexes ∆. 
 

Corollary 4. Let 𝐾𝛿[[𝑆]], 𝐿𝛿[[𝑆]],𝑀𝛿[[𝑆]] are a family of  𝑅[[S]]-module and 𝑋δ[[S]] is a 

submodule of 𝐿𝛿[[𝑆]] for every 𝛿 ∈ ∆. If 𝑋δ[[S]] ∈ 𝜎(𝐾𝛿[[𝑆]], 𝐿𝛿[[𝑆]],𝑀𝛿[[𝑆]]) for every 𝛿 ∈

∆, then ∏ 𝑋δ[[S]]𝛿∈∆ ∈ 𝜎(∏ 𝐾𝛿[[𝑆]]𝛿∈∆ , ∏ 𝐿𝛿[[𝑆]]𝛿∈∆ , ∏ 𝑀𝛿[[𝑆]]𝛿∈∆ )  

The following properties show that if triple (0, 𝐿[[𝑆]],𝑀[[𝑆]]) 𝑋1[[S]]-sub-exact and dan 

also 𝑋2[[S]]-sub-exact, then  triple (0, 𝐿[[𝑆]],𝑀[[𝑆]]) is (𝑋1[[S]] ∩ 𝑋2[[S]])-sub-exact over 

R[[S]]. 
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Proposition 5. Suppose that L and M are modules over R and (S, ≤) a strictly ordered monoid. 

Given R[[S]]-modules  L[[S]] and M[[S]], and 𝑋1[[S]], 𝑋2[[S]] are submodules of L[[S]]. If  

𝑋1[[S]], 𝑋2[[S]] ∈ 𝜎(0, 𝐿[[𝑆]],𝑀[[𝑆]]), then 𝑋1[[S]] ∩ 𝑋2[[S]] ∈ 𝜎(0, 𝐿[[𝑆]],𝑀[[𝑆]]). 

 

Proof: Since 𝑋1[[S]], 𝑋2[[S]] ∈ 𝜎(0, 𝐿[[𝑆]], 𝑀[[𝑆]]), then there are 𝑅[[𝑆]]-homomorphisms 𝜌1 

and 𝜌2 such that 0 → 𝑋1[[S]]
𝜌1
→𝑀[[𝑆]] and 0 → 𝑋2[[S]]

𝜌2
→𝑀[[𝑆]] are exact sequences. 

Therefore, 𝜌1 and 𝜌2 are R[[S]]-monomorphisms. Next, it is defined as 𝜌 = 𝜌1|
 

𝑋1[[S]] ∩ 𝑋2[[S]]. 

Then, 𝜌 is an R[[S]]-monomorphism. Therefore, 0 → 𝑋1[[S]] ∩ 𝑋2[[S]]
𝜌1
→𝑀[[𝑆]] is an exact 

sequence. So, it is proved that 𝑋1[[S]] ∩ 𝑋2[[S]] ∈ 𝜎(0, 𝐿[[𝑆]],𝑀[[𝑆]]).      
 

The properties described in Proposition 5 cause the following properties to take the consequence. 
 

Corollary 6. Suppose L and M are modules over R, and  (𝑆, ≤) is strictly ordered monoid.  Given 

GPSM 𝐿[[S]] and 𝑀[[S]] over GPSR R[[S]], and 𝑋δ[[S]] is a submodule of 𝑀[[𝑆]] for every 𝛿 ∈

∆. If 𝑋δ[[S]] ∈ 𝜎(0, 𝐿[[S]],𝑀[[S]]) for each 𝛿 ∈ ∆, then ⋂  𝑋δ[[S]]𝛿∈∆ ∈ 𝜎(0, 𝐿[[S]],𝑀[[S]])  

 

Example 7. After the properties related to X[[S]]-sub-exact sequence of GPSR are given, here 

are examples: 

 

1. Triple (𝑅[𝑋], 𝑅[𝑋], 0) is 𝑅-sub-exact on 𝑅[𝑋], where R-homomorphism 𝑓: 𝑅[𝑋] → 𝑅 is 

defined by  

𝑓(𝑎0 + 𝑎1𝑥 +⋯+𝑎𝑛𝑥
𝑛) = 𝑎0 

and g is zero mappings, such that 𝑅[𝑋]
𝑓
→𝑅

𝑔
→ 0 is an exact sequence. 

 

2. Triple ( 𝑅[𝑋], 𝑅[𝑋], 𝑅[𝑋]) is a 0-sub-exact on 𝑅[𝑋], because 𝑅[𝑋]
𝑔
→ 0

𝑖
→ 𝑅[𝑋] is an exact 

sequence, where the zero mapping g and inclusion i are R-homomorphisms. 

 

3. If I[[S]] is ideal of 𝑅[[𝑆]], then we can form the exact sequence 

𝐼[[𝑆]] 
𝑖
→ 𝑅[[𝑆]]

𝜋
→
𝑅[[𝑆]]

𝐼[[𝑆]]⁄ , where i is an identity and dan 𝜋 a natural homomorphism. 

 

Conclusion and Suggestion  
 

If given GPSM K[[S]], L[[S]], M[[S]] over GPSR R[[S]], then we can form a set of all 

submodule 𝑋[[S]] of L[[S]] so that triple (𝐾[[𝑆]], 𝐿[[𝑆]],𝑀[[𝑆]]) is 𝑋[[𝑆]]-sub-exact. 

If 𝑋δ[[S]] ∈ 𝜎(𝐾𝛿[[𝑆]], 𝐿𝛿[[𝑆]],𝑀𝛿[[𝑆]]) for each 𝛿 ∈ ∆, then  ∏ 𝑋δ[[S]]𝛿∈∆ ∈ 

𝜎(∏ 𝐾𝛿[[S]]𝛿∈∆ , ∏ 𝐿𝛿[[S]]𝛿∈∆ , ∏ 𝑀𝛿[[𝑆]]𝛿∈∆ ). If 𝑋δ[[S]] ∈ 𝜎(0, 𝐿[[S]],𝑀[[S]]) for each 𝛿 ∈ ∆, 

then ⋂  𝑋δ[[S]]𝛿∈∆ ∈ 𝜎(0, 𝐿[[S]],𝑀[[S]]). 

In this paper, there are still many opportunities to investigate the characterization of the 

X[[S]]-sub-exact sequence of GPSR R[[S]]. Also, investigating the necessary and sufficient 

conditions for X[[S]] to be a Noetherian module over R[[S]], where K[[S]], M[[S]] are Noetherian 

modules, but L[[S]] is not Noetherian. 
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