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 LaFeO3 (LFO) is commonly used as a material for gas sensor applications. 

However, the LFO material in ethanol gas sensor applications can still 

improve sensitivity and selectivity parameters. Gadolinium (Gd) doping is 

widely used in gas sensor applications to increase the sensitivity of gas 

sensors. In addition, reduced graphene oxide (rGO) materials are commonly 

used in gas sensor applications to increase gas sensors' selectivity, sensitivity, 

and working temperature. This study analyzed the effect of Gd doping 

(LGFO) and the addition of an rGO single layer on LFO material 

(LGFO@rGO) on sensitivity and selectivity based on the adsorption energy 

of the system with ethanol gas molecules. Density Functional Theory studies 

were conducted to yield insight into the LGFO or LGFO@rGO – ethanol gas 

interactions and the sensitivity and selectivity improvement by changing 

adsorption energy. Based on the analysis, the presence of Gd doping and 

single-layer rGO could increase the adsorption energy. The addition of the 

rGO layer showed an escalation of the adsorption energy of about 9.45%, 2.49 

eV in the LGFO to -2.75 eV LGFO@rGO. This improved adsorption capacity 

translates to a higher sensitivity for detecting lower concentrations of ethanol 

gas. This result shows the potential of LGFO and LGFO@rGO as ethanol gas 

sensor materials.  
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INTRODUCTION  

Ethanol represents a class of volatile, 

colorless, and flammable alcohols that taste 

sweet when combined with water (Wati, et 

al., 2017). It finds extensive application 

across diverse industries. Notably, ethanol 

produces various beverage products within 

the pharmaceutical, perfumery, food 

industry, cosmetic sectors, breath analysis, 

and traffic safety (Baharum et al., 2020; Nga 

Phan et al., 2022). It is a flammable gas with 

an explosion range of 6-12% (Ning et al., 

2023) and constitutes a significant risk factor 

contributing to numerous traffic accidents 

(Fergus, 2007; Nishitani, 2019; Abhilash et 

al., 2019). This compels the need to control 

and monitor ethanol gas concentrations in the 

environment effectively. While previous 

research has explored gas sensors for ethanol 

detection, limitations remain in achieving the 

desired sensitivity and selectivity, especially 

at low concentrations (Fergus, 2007). This 

highlights the need for further investigation 

into tailoring the structural and 

morphological properties of gas-sensing 

materials to enhance their performance (Sun 

et al., 2018; Wang et al., 2022). 

While perovskite may garner significant 

attention in contemporary scientific research, 

it is not novel. This material was discovered 

in the Ural Mountains in 1839 by Russian 

mineralogist Lev Perovski (Zhang et al., 
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2023). It has a generic formula ABX3, where 

A stands for monovalent cations, B for 

divalent metal cations, and X for halide ions. 

Perovskite materials continue to attract 

significant attention due to their unique 

properties, including high absorption 

coefficient, excellent light-harvesting 

capabilities, high charge carrier mobility, 

high melting and decomposition temperature, 

microstructural and morphological stability, 

good reliability, and thermal stability (Atta et 

al., 2016; Enhessari & Salehabadi, 2016; 

Zhang & Zhao, 2020; Zhang et al., 2023; 

Zhou et al., 2021). These properties make 

them ideal candidates for a wide range of 

applications, including gas sensors (Fergus, 

2007), solar cells (Zhang et al., 2023), LEDs 

(Pacchioni, 2021), lasers (Zhang et al., 2021), 

and photodetectors (Zhang et al., 2021). 

LaFeO3 (LFO) is a metal oxide 

semiconductor, one of the perovskite 

materials. LFO has been studied in various 

applications, such as photocatalysts (Khen et 

al., 2021), solid oxide fuel cells (Zhou et al., 

2021), and effect transistors (Wu et al., 

2019). LFO is also popular and well-

considered as one of the potential materials 

for gas sensor applications due to its 

properties, such as good selectivity, 

sensitivity, and high response (Cao et al., 

2020; Suhendi et al., 2022). Previous 

research has shown that LFO had an 

excellent response to various gases, 

including ethanol gas (Cao et al., 2019; 

Suhendi et al., 2021). Gas sensors based on 

LFO work by the change of conductivity 

caused by interaction between adsorbed gas 

molecules on the surface of the sensor. 

Because of this, the incorporation of dopants 

into LFO and the deposition of coating 

material onto its surface are promising 

strategies for enhancing the gas-sensing 

performance of LFO-based gas sensors. 

Heretofore, a substantial body of research has 

demonstrated the potential of Gd doping to 

significantly enhance the performance, 

detection range, selectivity, and stability of 

gas sensors (Çolak & Karaköse, 2022; 

Haryadi et al., 2022; Li et al., 2023). 

Moreover, numerous studies have 

highlighted the immense potential of Gd as a 

dopant in gas sensor materials. Considering 

these findings, this study endeavors to 

explore the utilization of Gd-doped LaFeO3 

(LGFO)-based gas sensors. 

Several studies have indicated that 

graphene can augment adsorption because of 

its exceptionally high surface area. Graphene 

also exhibited significant alterations in 

electrical resistance upon adsorption. 

Graphene can serve as a support material for 

gas sensors. One such graphene-based 

material, reduced graphene oxide (rGO), 

offers both affordability and high sensitivity. 

Previous studies have demonstrated the 

enhancement of gas sensor performance 

through graphene (Li et al., 2022; Maity et 

al., 2017). rGO possesses excellent charge-

carrier mobility, making it an attractive 

option for developing electronic sensors 

(Dua et al., 2010; Schedin et al., 2007). With 

advantages similar to those of graphene, rGO 

has gained considerable interest as a gas 

sensor material due to its lower fabrication 

costs. 

Additionally, rGO can be easily modified 

or fine-tuned to achieve desired 

characteristics (Fellah, 2021; Guo et al., 

2018; Sharma et al., 2020). Based on these 

findings, the present study investigates the 

impact of introducing an rGO coating onto 

LGFO (LGFO@rGO) to enhance the gas 

sensor performance. Specifically, we 

analyzed the change in the adsorption 

energies of LGFO and LGFO@rGO in the 

presence of ethanol gas. We evaluated the 

effect of rGO on LGFO, which resulted in 

increased adsorption energy owing to the 

presence of a single layer of rGO.  

This study explores the adsorption energy 

alterations between LGFO and LGFO@rGO 

upon interaction with ethanol gas using 

Density Functional Theory (DFT) 

calculations. By comparing the adsorption 

energies of these materials, we sought to 

assess the influence of Gd doping and rGO 

coating on their gas-sensing properties, 

specifically for ethanol detection. The 
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findings of this investigation will contribute 

to the development of advanced gas sensor 

materials with improved performance and 

selectivity for the detection of ethanol gas. 

 

METHODS  

The first principle in this study based on 

density functional theory (DFT) is performed 

using Quantum ESPRESSO with the 

projector-augmented wave (PAW) 

pseudopotential. The generalized gradient 

approximation with Perdew-Burke-

Ernzerhof (GGA-PBE) functional described 

the electronic exchange and correlation 

effects. The orthorhombic LaFeO3 (LFO) 

structure employed in this study possesses 

lattice parameters of a = 5.58 Å, b = 5.61 Å, 

and c = 7.90 Å. This structure accommodates 

4 La atoms, 4 Fe atoms, and 12 O atoms 

within its unit cell.  

This study implemented Gd doping by 

substituting 50% of the La atoms in LFO, 

resulting in the La0.5Gd0.5FeO3 (LGFO) 

composition. The rGO structure was 

designed as a single layer of 19 carbon atoms 

(C) arranged in five honeycomb rings 

(hexagons). The carbon atoms' last available 

bonds were saturated with hydrogen atoms 

(H), and one oxygen atom (O) was inserted 

into the graphene structure to form the rGO 

structure, as shown in Figure 1.  
 

 
Figure 1 Schematic Illustrations of Single Layer rGO 

from (a) Top Side (b) Top-front Side 

 

We employed a converged kinetic energy 

cutoff of 85 Rydberg, a converged k-point 

grid of 4x4x4, and an optimum distance 

between adsorbent and ethanol gas of 1 Å. 

These parameters were chosen based on 

convergence tests of the system's total 

energy. The optimum distance between 

adsorbent and ethanol gas of 1 Å was 

determined by performing calculations at 

different distances and comparing the 

corresponding adsorption energies.  

The adsorption energy was calculated 

using equation (1), which has been widely 

used in previous studies (Sorescu, 2006; 

Timsorn & Wongchoosuk, 2020).  

Eadsorption=Eadsorban+Eadsorbate-Esystem    (1) 

This equation accurately captures the 

interaction between the adsorbate and the 

adsorbent and provides a reliable measure of 

the adsorption strength. The research 

flowchart is shown in Figure 2. 

 
 

Figure 2 Research Flowchart 

 

Define research objectives

Literature review

Define the system and intial atomic 
configuration

Create input files and specify parameter

K-point, cut-off energy, and molecular 
distance convergence

Calculate and analyze
adsorption energy

Interpret result and compare with prior 
research

Summarize findings and discussion 
implications
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RESULTS AND DISCUSSION 
 

The Ethanol Gas Molecule Adsorption at 

LGFO and LGFO@rGO Surface 

The LaFeO3 crystal structure exhibits an 

orthorhombic arrangement with the space 

group Pbnm and contains 20 atoms within its 

unit cell. By substituting two La ions with Gd 

ions in the orthorhombic phase, LGFO is 

obtained. Figure 3 depicts the crystal 

structure of LGFO. The vc-relax calculations 

were performed to determine the adsorption 

energy of the ethanol gas molecule on LGFO. 

The calculations involved considering 

ethanol gas as the adsorbate, LGFO as the 

adsorbent, and the system consisting of 

LGFO interacting with ethanol. 

 

 
Figure 3. Schematic Illustration of LGFO 

 

The vc-relax calculation for each 

adsorbate, adsorbent, and system provides 

the total energy, which is utilized in equation 

(1) to determine the adsorption energy of the 

ethanol gas molecule on LGFO. The research 

findings indicate an adsorption energy of -

2.49 eV for the interaction between ethanol 

gas and LGFO. Moreover, when a single 

layer of rGO is added to LGFO as an 

adsorbate, as shown in Figure 4, the ethanol 

gas molecule adsorption at LGFO@rGO 

surface was found to be -2.75 eV. 

 
Figure 4. Schematic Illustration of LGFO@rGO 

 

The negative adsorption energy values 

observed for both LGFO and LGFO@rGO 

indicate an exothermic reaction between the 

adsorbent and the adsorbate, resulting in a 

more energetically stable system (Cao et al., 

2019; Chen et al., 2019; Li et al., 2019). 

Conversely, positive adsorption energy is 

typically unsuitable for gas sensor materials 

because it indicates an endothermic reaction. 

Positive adsorption energy values are 

unfavorable and imply that the material does 

not possess sensing properties for the gas 

molecules used as adsorbates (Al-Abbas et 

al., 2018; Joy et al., 2020; Kim et al., 2019; 

Wang et al., 2019). Additionally, the 

negative adsorption energy suggests a quick 

and spontaneous adsorption process on the 

surface of the adsorbent, which is favorable 

for gas sensors. 

 

The Effects of rGO Coating on Adsorption 

Energy 

The impact of rGO coating on the 

adsorption of ethanol gas on the LGFO 

surface is moderately enhanced. This 

enhancement is primarily due to the 

increased surface reactivity of the rGO, 

leading to enhanced adsorption energy. The 

improved adsorption enriched the capability 

of the ethanol gas sensor based on LGFO, 

enabling the detection of low concentrations 

of ethanol gas. The rGO coating introduces 



Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi, 13 (1) (2024) 1-9  5 

additional active sites for binding ethanol gas 

molecules, resulting in enhanced adsorption 

energy. In this study, the adsorption energy 

was observed to augment 9.45% from -2.49 

eV to -2.75 eV after rGO coating. The 

adsorption energies of the rGO-coated LGFO 

are more negative than those of the uncoated 

LGFO, indicating that the rGO coating on 

LGFO provides more stable configurations 

than the uncoated material. 

The more negative adsorption energy 

post-rGO coating reveals a firmer connection 

between ethanol gas and LGFO@rGO than 

on LGFO. This attests that the ethanol gas 

molecules showcase greater adhesion affinity 

and are more apt to adhere to the 

LGFO@rGO surface. The more formidable 

correlation augmented the sensitivity of the 

gas sensor, permitting the detection of low 

concentrations of ethanol gas. The more 

negative the adsorption energy illustrates, the 

more robust the adsorption (Zhou et al., 

2016).   

The selectivity of a gas sensor can be 

assessed by comparing the adsorption 

energies of the different gases. Table 1 

compares previous research results for 

various adsorbates and adsorbents for gas 

sensors. LFO and LFNO exhibited 

adsorption energies of -2.27 eV and -2.37 eV, 

respectively. Comparing these values with 

the present study on LGFO and 

LGFO@rGO, it is evident that the gas sensor 

based on LFO is more suitable for detecting 

ethanol gas than H2. 

In another study, the adsorption energy of 

ethanol gas on Ag metal decorated SnO₂ was 

found to be -1.82 eV. This comparison 

demonstrates that the ethanol gas sensor 

based on LGFO and LGFO@rGO is slightly 

more sensitive than the one based on Ag 

metal decorated SnO₂. This study's more 

negative adsorption energy suggests that 

LGFO and LGFO@rGO possess a higher 

affinity for ethanol gas. This selectivity can 

be advantageous when designing gas sensors 

for specific applications that require the 

detection of ethanol gas (Kou et al., 2014). A 

more negative adsorption energy signifies 

that the desorption process, involving 

releasing ethanol gas molecules from the 

sensor surface, is thermodynamically 

favorable. This reversibility is crucial for gas 

sensors as it allows them to be reusable and 

responsive to changes in ethanol gas 

concentration. 

However, this research solely focuses on 

studying the potential of LGFO and 

LGFO@rGO in adsorption energy, owing to 

computational resource constraints for 

performing extensive DFT calculations. 

Therefore, further in-depth studies are 

required to investigate their potential for 

ethanol gas sensor applications, considering 

factors such as electronic properties. 

Modifying the rGO structure by introducing 

doping, as demonstrated in numerous 

research studies, could potentially enhance 

the overall performance of this gas sensor. 

Experimental research can also be conducted 

to compare the theoretical findings obtained 

through DFT calculations with practical 

results. 

Consequently, this research highlights the 

promising potential of LGFO and 

LGFO@rGO for ethanol gas sensor 

applications.  

 
Table 1. The Adsorption Energy of Various Materials for Various Gas Molecules 

No. Material Gas Eadsorptoin (eV) References 

1 LaFeO3 H2 -2.27 (Zhou et al., 2021) 

2 LaFe0.75Nb0.25O3 (LFNO) H2 -2.37 (Zhou et al., 2021) 

3 LaFeO3 NO -1.38 (Kizaki & Kusakabe, 2012) 

4 Ag metal decorated SnO2 C2H6O -1.82 (Li et al., 2019) 

5 ZnO NO2 -2.02 (Gao et al., 2021) 

6 ZnO@rGO NO2 -2.46 (Gao et al., 2021) 

7 LGFO C2H6O -2.49 this research 

8 LGFO@rGO C2H6O -2.75 this research 
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With adsorption energies of -2.49 eV and -

2.75 eV for LGFO and LGFO@rGO, 

respectively, these materials are generally 

considered favorable due to their negative 

adsorption energy. Furthermore, the 

LGFO@rGO composite exhibits slightly 

better sensing performance. The gas sensor's 

performance can be enhanced by 

incorporating rGO, which possesses a large 

surface area and more active sites. The 

findings of this study suggest that 

LGFO@rGO exhibits superior sensitivity 

and selectivity when detecting ethanol 

molecules in gas form, thus surpassing the 

performance of LFO or LGFO sensors. These 

results have significant implications for the 

practical deployment of ethanol gas sensors. 

The enhanced sensitivity and selectivity of 

the LGFO@rGO sensor design offer the 

potential for more accurate and reliable 

detection of ethanol across various 

applications. Additionally, the high 

sensitivity and selectivity of LGFO@rGO to 

ethanol gas molecule adsorption make it an 

attractive candidate for superior gas sensing 

applications. 

 

CONCLUSION AND SUGGESTION 

DFT Calculation studied the adsorption 

energy of LGFO and LGFO@rGO. The 

adsorption energies of ethanol on LGFO and 

LGFO@rGO are -2.49 eV and -2.75 eV, 

respectively. The results demonstrate that 

rGO coating on LGFO effectively enhances 

the adsorption energy of ethanol by 9.45%. 

This improved adsorption capacity translates 

to a higher sensitivity for detecting lower 

concentrations of ethanol gas. Therefore, 

LGFO@rGO holds promising potential as a 

material for susceptible ethanol gas sensors. 
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