
Volume 12. Number 1. 31-41 MAY 2023 

  

Jurnal ilmiah pendidikan fisika Al-Biruni 
https://ejournal.radenintan.ac.id/index.php/al-biruni/index 

DOI: 10.24042/jipfalbiruni.v12i1.15340 

 
P-ISSN: 2303-1832 

e-ISSN: 2503-023X 

 

 
How to cite Romadani, A. (2023). Solution of Klein-Gordon equation in F(R) theory of gravity. Jurnal ilmiah 

pendidikan fisika Al-Biruni, 12(1), 31-41. 

Solution of Klein-Gordon Equation in F(R) Theory of Gravity 

 

Arista Romadani
1*

 
 

1Physics Department, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang, Indonesia 

 
*Corresponding Address: arista.romadani@uin-malang.ac.id 

 
 

Article Info   ABSTRACT  
 

Article history: 
Received: December 29, 2022 
Accepted: April 20, 2023 
Published: May 24, 2023 

 

 The 𝑓(𝑅) theory, as a modification of the general relativity theory, is 

frequently employed as an alternative theory of gravity and offers a promising 

avenue for addressing the challenges of formulating a quantum gravity theory. 

In this study, by applying the separation method of time, radial and angular 

variables, we derived the general solution of the Klein-Gordon equation in a 

curved space-time using modified Schwarzschild metric. We modified Ricci 

scalar 𝑅 form in Einstein’s action principle as a general function of Ricci 

scalar 𝑓(𝑅) and formulated the general Schwarzschild metric. The solution of 
the time function was analytically obtained in exponential form, and the 

solution of the angular function in terms of Legendre polynomial depends on 

azimuthal and magnetic quantum numbers. The radial function in terms of a 

non-linear second-order differential equation was solved by a numerical 

method using Python. The solutions described the gravitational effect for a 

light particle on the area gravitationally has a strong interaction, represented 

by a spherically symmetric metric. For small 𝑟 (in Schwarzschild radius), the 

results analytically show that the gravitational effect in this region is massive. 

It follows that even light would be drawn into a black hole and unable to 

escape. For further research, it is expected to extend the Klein-Gordon 
equation in relativistic quantum mechanics to modified general relativity 

theory. This theory offers a different way of looking at the effects of gravity 

in quantum field theory. 
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INTRODUCTION  

Black holes are currently a topic of great 

interest and remain a significant puzzle for 

scientists (Renner & Wang, 2021; 

Polchinski, 2017). Researchers strive to 

comprehensively understand the phenomena 

and processes that occur in black holes, 

including modifying Einstein's field 

equations in general relativity theory 

(Straight et al., 2020; Shankaranarayanan & 

Johnson, 2022). General relativity theory can 

explain astronomical phenomena, focusing 

on the structure of massive objects like 

neutron Stars, black holes, quasars, and the 

universe's expansion (Yagi & Stein, 2016; 

Barausse, 2019). 

The discrepancy between observational 

and calculation results generated ideas to 

alter Einstein's general relativity theory. The 

first hypothesis changed the right side of the 

Einstein field equation by suggesting the 

existence of dark matter. The second idea 

modified the left side of the Einstein field 

equation by assuming only matter, like dark 

matter (Yadav & Verma, 2019) and dark 

energy (Odintsov & Oikonomou, 2019). 

Two variational ideas that could be 

utilized to develop the modified general 

relativity theory are Formalism based on the 

Palatini variation and standard metric 

variation (Ferraris et al., 1982).  

These principles are built on the field 

equation with the Lagrangian linear in R 

https://ejournal.radenintan.ac.id/index.php/al-biruni/index
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(Buchdahl, 1970). Brans and Dicke finished 

the extension of the general relativity theory 

with the development of the scalar-tensor 

theory of gravity. One specific example of 

how gravitational interactions in general 

relativity theory are connected to the scalar 

field and the tensor field is the scalar-tensor 

theory. (Brans & Dicke, 1961). 

The 𝑓(𝑅) theory, which is a part of the 

metric or Palatini formalism, and scalar-

tensor theory, introduced the basic ideas of 

gravity theory (Capozziello & Laurentis, 

2011; S. Capozziello et al., 2010). Starting 

with the spherical symmetry solutions in 

𝑓(𝑅) theory, one could use the Noether 

symmetry approach to solve the axial 

symmetry problem. (Capozziello et al., 

2010). One of the simplest modifications to 

gravity theory is the 𝑓(𝑅) theory, which 

generalizes the scalar Ricci of the Hilbert-

Einstein equation to the function 𝑓(𝑅) of 𝑅. 

(Capozziello et al., 2010). 

To construct general relativity theory 

using a semi-classical framework, the 

formulation of modified general relativity 

theory was proposed. The most successful 

method was determined using the 𝑓(𝑅) 
theory. (Capozziello et al., 2010). It has 

become a new framework for explaining the 

interaction of gravity (Faraoni & 

Capozziello, 2011). 

The Klein-Gordon equation is beneficial 

for describing particles in the relativistic 

quantum mechanics (Bussey, 2022). This 

equation appears when the effect of relativity 

is calculated (𝑣 ≈ 𝑐). The Klein-Gordon in 

linear form is a second-order partial 

differential equation. It is a relativistic wave 

function that represents the dynamics of 

elementary particles on a relativistic scale 

(Joseph, 2020). In this research, we also 

prove how the solution of the Klein-Gordon 

equation in modified gravity 𝑓(𝑅) theory is 

consistent with the non-relativistic limit. 

A simple function represents the solution 

of the Klein-Gordon equation in 

Schwarzschild space-time analytically 

solved for region 0 ≤ 𝑟 ≤ ∞ (Elizalde, 1988; 

Qin, 2012). In contrast, the Klein-Gordon 

equation for time-dependent solved using an 

asymptotic method for certain angular 

momentum conditions and proved it for the 

Schwarzschild radius (Rowan & Stephenson, 

1976). 

Some modifications of general relativity 

such as 𝑓(𝐺), 𝑓(𝑅), and gravity 𝑓(𝑅, 𝐺) as a 

gravitational modification, were constructed 

to explain unsolved phenomena like dark 

matter, inflation, etc. (Nojiri & Odintsov, 

2007) and (Multamäki & Vilja, 2006). 

Capozziello et al. reviewed and introduced 

the fundamental principles of the theory of 

gravity, more specifically to the scalar-tensor 

theory and the 𝑓(𝑅) theory (Salvatore 

Capozziello & Francaviglia, 2008; 

Capozziello et al., 2012). 

The confluent Heun functions provide the 

angular and radial parts of the Klein-Gordon 

equation solutions. This study clarified how 

a charged, rotating black hole's gravitational 

field (Kerr-Newman space-time) affects a 

charged, massive scalar field (Vieira et al., 

2014). Numerical methods are needed to 

solve the KG equation in curved space-time 

(Lehn et al., 2018a; Griffith, 2004). 

Earlier research that sought exact solutions, 

which either involved approximative 

expansions or simplifying assumptions to 

obtain asymptotic solutions, could have been 

more conclusive at best. (Lehn et al., 2018a). 

The Klein-Gordon equation is used for a 

massless scalar field contained in a Casimir 

cavity and moves in an equatorial orbit 

(geodesic) (Sorge, 2014). 

The solution of Klein-Gordon equations 

has also been worked out for other black hole 

models, which succeeded in numerical 

solution as a periodic function of a black hole 

(Pourhassan, 2016). The solution of the 

relativistic Klein-Gordon equation in curved 

space-time with a massive field was obtained 

numerically and then compared to the non-

relativistic Coulomb field solution directly 

through the interference theory (Lehn et al., 

2018b). The solutions explain how the 

gravitational effect work. The spherically 

symmetric metric represents it. 
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From the previous research, we expand 

the solution of Klein-Gordon in curved 

space-time in general relativity theory by 

(Lehn et al., 2018a) to the modified gravity 

theory using the 𝑓(𝑅) theory. Some unsolved 

phenomena in general relativity, such as dark 

matter and inflation, encourage me to do it as 

an alternative theory of gravity. The 

investigation of a gravitational effect in 𝑓(𝑅) 
theory solving the Klein-Gordon equation 

has never been studied before. 

METHODS  

The solutions of the Klein-Gordon 

equations in several gravitational fields and 

their consequences are fundamental to 

discuss. It is important to note that, in 

principle, the physics of these things may be 

understood by looking at how scalar fields 

behave in black hole backgrounds. The 

Klein-Gordon equation must thus be solved 

for both natural and complex areas, and 

associated phenomena like the radiation of 

scalar particles must be investigated. 

In this research, we generalize the Klein-

Gordon equation in curved space-time for a 

light particle on the area that gravitationally 

has a strong interaction. A spherically 

symmetric metric represents it. First, we 

extended Einstein’s field equation in general 

relativity to modified general relativity 

through 𝑓(𝑅) theory. Second, the metric for 

a static spherical solution in Schwarzschild 

space-time was constructed using 𝑡ℎ𝑒 𝑓(𝑅) 
theory of general relativity. It is known as 

modified Schwarzschild space-time. From 

Einstein’s action principle as a general 

function of Ricci scalar 𝑓(𝑅), the general 

Schwarzschild metric was formulated. Third, 

we solved the Klein-Gordon equation by 

substituting the modified Schwarzschild 

metric by using the method of separation of 

variables. Lastly, the general solution of 

Klein-Gordon was derived in exact 

calculation by separating time, radial, and 

angular variables, and the numerical solution 

of the radial equation is also presented. The 

radial function in terms of a non-linear 

second-order differential equation was 

solved by a numerical method using Python. 

 

RESULTS AND DISCUSSION 

𝑓(𝑅) Theory of General Relativity 

𝑓(𝑅) theory of general relativity is one 

modification of gravity theory first proposed 

by Hans Adolph Buchdahl in 1970. 

Generalization of Einstein-Hilbert's action to 

become a general function of as follows 

𝑆 =
1

2𝜅
∫𝑑4𝑥√−𝑔𝑓(𝑅) + 𝐿(𝑚) (1) 

where 𝐿(𝑚) is the matter Lagrangian, and 
𝑓(𝑅) is a function of the Ricci scalar. We 

obtained the Einstein field equation in 

general relativity theory by setting 𝑓(𝑅) =
𝑅. 

By applying the variational principle of 

the action in Equation (1), we found the 

generalization of the fields equation in the 

𝑓(𝑅) function (Sotiriou & Faraoni, 2010) 

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈

=
1

𝑓′(𝑅)
[𝛻𝜇𝛻𝜈𝑓′(𝑅) − 𝑔𝜇𝜈𝛻𝜇𝛻

𝜇𝑓′(𝑅)

+
{𝑓(𝑅) − 𝑓′(𝑅)𝑅}

2
𝑔𝜇𝜈] + 𝑇𝜇𝜈  

(2) 

or in a different form Equation (2) is written 

as 

𝑓 ′(𝑅)𝑅𝜇𝜈 −
𝑓(𝑅)

2
𝑔𝜇𝜈 − 𝑓

′(𝑅);𝜇𝜈

+ 𝑔𝜇𝜈𝛻𝜇𝛻
𝜇𝑓′(𝑅)

= 𝜅𝑇𝜇𝜈 

(3) 

𝑓′(𝑅)𝑅𝜇𝜈 −
𝑓(𝑅)

2
𝑔𝜇𝜈 −𝐻𝜇𝜈 = 𝜅𝑇𝜇𝜈 (4) 

where 𝐻𝜇𝜈 = 𝑓′(𝑅);𝜇𝜈 − 𝑔𝜇𝜈𝛻𝜇𝛻
𝜇𝑓′(𝑅), the 

trace of Equation (3) and (4) 

3𝛻𝜇𝛻
𝜇𝑓′(𝑅) + 𝑓′(𝑅)𝑅 − 2𝑓(𝑅) = 𝜅𝑇 

𝑓′(𝑅)𝑅 − 2𝑓(𝑅) − 𝐻 = 𝜅𝑇. (5) 

Schwarzschild Metric on 𝒇(𝑹) Theory 

We calculate the modified Einstein field 

equation using 𝑓(𝑅) theory for the 

Schwarzschild metric with a static object of 

mass 𝑚 and spherical symmetry. The metric 

of spherical symmetry can be written 
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𝑑𝑠2 = −𝑎(𝑟)𝑑𝑡2 + 𝑏(𝑟)𝑑𝑟2

+ 𝑟2(𝑑𝜃2

+ 𝑠𝑖𝑛2 𝜃 𝑑𝜑2) 
(6) 

with Ricci curvature scalar 𝑅 can be 

simplified following the Bernoulli equation 

𝑏′(𝑟) + ℎ(𝑟)𝑏(𝑟) + 𝑙(𝑟)𝑏2(𝑟) = 0 (7) 

the value of ℎ(𝑟) dan 𝑙(𝑟) are linear 

constants, and the square of 𝑏(𝑟) 
 

ℎ(𝑟)

=
𝑟2𝑎′2(𝑟) − 4𝑎2(𝑟) − 2𝑟𝑎(𝑟)[2𝑎′(𝑟) + 𝑟𝑎"(𝑟)]

𝑟𝑎(𝑟)[4𝑎(𝑟) + 𝑟𝑎′(𝑟)]
 

(8) 

and 

𝑙(𝑟) =
2𝑎(𝑟)

𝑟
[
2 + 𝑟2𝑅(𝑟)

4𝑎(𝑟) + 𝑟𝑎′(𝑟)
] (9) 

solution of Equation (8)  

𝑏(𝑟)

=
𝑒𝑥𝑝(−∫𝑑𝑟 ℎ(𝑟))

𝐾 + ∫𝑑𝑟𝑙(𝑟) 𝑒𝑥𝑝(−∫𝑑𝑟ℎ(𝑟))
 

(10) 

exact solution of Equation (8) is obtained if 

𝑙(𝑟) = 0 with 𝑅 = −
2

𝑟2
. For 𝑏(𝑟), return to 

Minkowski in 𝑟 = ∞, ℎ(𝑟) and 𝑙(𝑟) must be 

zero, so 𝑏′(𝑟) = 0. The value of 𝑅 is equal to 

𝑟−𝑛 at a great distance from the center, so the 

Bernoulli solution is 

𝑎(𝑟) = 1 +
𝑘1
𝑟
+
𝑘2
𝑟2

+
1

𝑟2
∫𝑑𝑟 (∫ 𝑟2𝑅(𝑟)𝑑𝑟) 

(11) 

with 𝑘1 and 𝑘2 is constants. 

The Einstein field equation is modified 

using the 𝑓(𝑅) theory  

3𝛻𝜇𝛻
𝜇𝑓′(𝑅) + 𝑓′(𝑅)𝑅 − 2𝑓(𝑅) = 𝜅𝑇 

𝑓′(𝑅)𝑅 − 2𝑓(𝑅) − 𝐻 = 𝜅𝑇 (12) 

where 𝐻𝜇𝜈 = 𝑓′(𝑅);𝜇𝜈 − 𝑔𝜇𝜈𝛻𝜇𝛻
𝜇𝑓′(𝑅). The 

solution of Equation (11) looks like de Sitter-

Schwarzschild that 

𝑎(𝑟) = 1 −
2𝑚

𝑟
−
𝜆

3
𝑟2 (13) 

so the modified Schwarzshild metric was 

obtained 

𝑑𝑠2 = −(1 −
2𝑚

𝑟
−
𝜆

3
𝑟2) 𝑑𝑡2

+ (1 −
2𝑚

𝑟
−
𝜆

3
𝑟2)

−1

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜑2) 

 

Klein-Gordon Equation on Modified 

Schwarzschild Metric 

The relativistic energy of free mass 𝑚 

is (Bjorken et al., 1966), (Romadani & Rani, 

2020) 

𝐸2𝛹 = (𝑝2𝑐2 +𝑚2𝑐4)𝛹 (15) 

in quantum mechanics, 𝑬 and 𝒑 are operators 

where 𝑬 is expressed by 𝒊ℏ
𝝏

𝝏𝒕
, and 𝒑 is 

expressed by −𝒊ℏ𝜵 and substitute to 

Equation (15) becomes 

−ℏ2
𝜕2𝛹

𝜕𝑡2
= (−ℏ2𝛻2𝑐2 +𝑚2𝑐4) (16) 

a simple formulation of Equation (16) is 

written by 

(𝛻2 −
1

𝑐2
𝜕2

𝜕𝑡2
−
𝑚2𝑐2

ℏ
2 )𝛹 = 0 (17) 

which is known as the Klein-Gordon 

equation in the Minkowskian metric. The 

general equation of the Klein-Gordon 

equation in tensor form is 

(𝛻𝜇𝛻
𝜇 +𝑚2)𝛹 = 0 (18) 

with 𝛻𝜇 = 𝑔𝜇𝜈𝛻
𝜈. Equation (19) becomes 

[
1

√−𝑔
𝜕𝜇(𝑔

𝜇𝜈√−𝑔𝜕𝜈) +𝑚
2]𝛹 = 0 (19) 

the covariant metric 𝑔𝜇𝜈 and contravariant 

metric 𝑔𝜇𝜈 in modified Schwarzschild is 

written by (Romadani, 2015)

𝑔𝜇𝜈 =

(

 
 
 
 
−(1 −

2𝑚

𝑟
−
𝜆𝑟2

3
) 0 0 0

0 (1 −
2𝑚

𝑟
−
𝜆𝑟2

3
)

−1

0 0

0 0 𝑟2 0
0 0 0 𝑟2 𝑠𝑖𝑛2 𝜃)

 
 
 
 

 (20) 
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𝑔𝜇𝜈 =

(

 
 
 
 
 
 
−(1 −

2𝑚

𝑟
−
𝜆𝑟2

3
)

−1

0 0 0

0 (1 −
2𝑚

𝑟
−
𝜆𝑟2

3
) 0 0

0 0
1

𝑟2
0

0 0 0
1

𝑟2 𝑠𝑖𝑛2 𝜃)

 
 
 
 
 
 

. (21) 

The Klein-Gordon equation on 

spherically symmetric metrics in Equation 

(19) can be derived becomes 

{
1

𝑔𝑡𝑡

𝜕2

𝜕𝑡2
+
1

𝑟2
𝜕

𝜕𝑟
(
𝑟2

𝑔𝑟𝑟

𝜕

𝜕𝑟
)

+
1

𝑟2 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
)

+
1

𝑟2 𝑠𝑖𝑛2 𝜃

𝜕2

𝜕𝜑2
+𝑚2}𝛹 = 0 

(22) 

where √𝑔 = 𝑟2 𝑠𝑖𝑛 𝜃. 

To solve Equation (22), we defined 

𝛹(𝑡, 𝑟, 𝜃, 𝜑) = 𝑇(𝑡)𝑅(𝑟)𝑌(𝜃, 𝜑) (23) 

by using the separation of variables with 

substitute Equation (23) to (22), we found 

that 
1

𝑇

𝜕2

𝜕𝑡2
+ 𝑔𝑡𝑡 {

1

𝑟2𝑅

𝜕

𝜕𝑟
(
𝑟2

𝑔𝑟𝑟

𝜕𝑅

𝜕𝑟
)

+
1

𝑟2
[

1

𝑌 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕𝑌

𝜕𝜃
)

+
1

𝑌 𝑠𝑖𝑛2 𝜃

𝜕2𝑌

𝜕𝜑2
] +𝑚2}𝛹 = 0 

(24) 

 

Solution for Time Function 

From Equation (24), time variable 𝑡 is written 

as 

1

𝑇

𝜕2𝑇

𝜕𝑡2
= −𝐸2 (25) 

the solution of Equation (26) satisfies the 

boundary limit, and the solution is 

𝑇(𝑡) = 𝐴𝑒−𝑖𝐸𝑡 . (26) 

Solution for Angular Function 

The equation of the angular part from 

Equation (24) is expressed as 

𝑠𝑖𝑛 𝜃
𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕𝑌

𝜕𝜃
) +

𝜕2𝑌

𝜕𝜑2

= −𝑙(𝑙 + 1)𝑌 𝑠𝑖𝑛2 𝜃 

(27) 

by using the method of separation variables 

𝑌(𝜃,𝜙) = 𝛩(𝜃)𝛷(𝜑), it can be derived 

become 
1

𝛩
[𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕𝑌

𝜕𝜃
)] + 𝑙(𝑙

+ 1) 𝑠𝑖𝑛2 𝜃 = 𝑚2 

(28) 

for variable 𝜃 with the solution is 

𝛩(𝜃) = 𝐵𝑃𝑙
𝑚(𝑐𝑜𝑠 𝜃) (29) 

where 𝑃𝑙
𝑚is associated Legendre function 

depends on azimuthal quantum number 𝑙 and 

magnetic quantum number 𝑚 by definition 

satisfy 

𝑃𝑙
𝑚(𝑥) = (1 − 𝑥2)

|𝑚|
2 (

𝑑

𝑑𝑥
)
|𝑚|

𝑃𝑙(𝑥) (30) 

and 𝑃𝑙(𝑥) is the Legendre polynomial satisfy 

the Rodrigues formula  

𝑃𝑙(𝑥) =
1

2𝑙𝑙!
(
𝑑

𝑑𝑥
)
𝑙

(𝑥2 − 1)𝑙 (31) 

the angular equation for variable 𝜑 is written 

by 

1

𝛷

𝜕2𝛷

𝜕𝜑2
= −𝑚2 (32) 

with the solution 

𝛷(𝜑) = 𝐶𝑒𝑖𝑚𝜙 + 𝐷𝑒−𝑖𝑚𝜙  (33) 

because the solution has to cover the latter by 

allowing 𝑚 to run negative, we found that 

𝛷(𝜑) = 𝐶𝑒𝑖𝑚𝜑 (34) 

the constants factor in front absorbs that into 

𝛩 where 0 ≤ 𝜑 ≤ 2𝜋. Equation (35) has to 

require 𝛩(𝜑 + 2𝜋) = 𝛩(𝜑) so 𝑚 must be an 

integer 𝑚 = 0,±1,±2, …. The solution for 

angular function 𝑌𝑙
𝑚(𝜃, 𝜑) is formulated in 

Table 1.
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Tabel 1: The spherical harmonics functions 𝑌𝑙
𝑚(𝜃,𝜑) (Griffith, 2004) 

𝒍 𝒎 𝒀𝒍
𝒎(𝜽,𝝋) 

0 0 𝑌0
0(𝜃,𝜑) = (

1

4𝜋
)

1
2⁄

 

1 

-1 𝑌1
−1(𝜃,𝜑) = (

3

8𝜋
)

1
2⁄

𝑠𝑖𝑛 𝜃 𝑒−𝑖𝜑 

0 𝑌1
0(𝜃,𝜑) = (

3

4𝜋
)

1
2⁄

𝑐𝑜𝑠 𝜃 

1 𝑌1
1(𝜃,𝜑) = −(

3

8𝜋
)

1
2⁄

𝑠𝑖𝑛 𝜃 𝑒+𝑖𝜑 

2 

-2 𝑌2
−2(𝜃, 𝜑) = (

15

32𝜋
)

1
2⁄

𝑠𝑖𝑛2 𝜃 𝑒−2𝑖𝜑 

-1 𝑌2
−1(𝜃,𝜑) = (

15

8𝜋
)

1
2⁄

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑒−𝑖𝜑  

0 𝑌2
0(𝜃, 𝜑) = (

5

16𝜋
)

1
2⁄

(3 𝑐𝑜𝑠2 𝜃 − 1) 

1 𝑌2
1(𝜃, 𝜑) = −(

15

8𝜋
)

1
2⁄

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑒𝑖𝜑  

2 𝑌2
2(𝜃, 𝜑) = (

15

32𝜋
)

1
2⁄

𝑠𝑖𝑛2 𝜃 𝑒2𝑖𝜑 

Solution for Radial Function 

The radial equation from Equation (24) is 

written by 

1

𝑟2
𝜕

𝜕𝑟
(
𝑟2

𝑔𝑟𝑟

𝜕𝑅

𝜕𝑟
) + [𝑚2 −

𝐸2

𝑔𝑡𝑡
−
𝑙(𝑙 + 1)

𝑟2
] 𝑅

= 0 

(35) 

we define that 𝑅(𝑟) = √𝑔𝑟𝑟
𝑈(𝑟)

𝑟
, so the 

radial equation reduces to 

𝑑2𝑈

𝑑𝑟2
+ [
𝑔′𝑟𝑟
𝑟𝑔𝑟𝑟

+
1

2

𝑔"𝑟𝑟
𝑔𝑟𝑟

−
3

4
(
𝑔′𝑟𝑟
𝑔𝑟𝑟

)

2

+ (𝑚2 + 𝐸2𝑔𝑟𝑟

−
𝑙(𝑙 + 1)

𝑟2
)𝑔𝑟𝑟]𝑈 = 0 

(36) 

where 𝑔𝑟𝑟 is modified Schwarzschild space-

time in Equation (20). 

Numerical Solutions for Radial Function 
Here, we see the numerical solution of the 

radial equation in Equation (36). We assume 

𝜆 = 𝑚 = 𝐸 = 1 to predict the solution of 

𝑅(𝑟) for 𝑙 = 0, 𝑙 = 1, and 𝑙 = 2. Using 

Python, we found the numerical solution for 

the radial function in Tabel 2. 

The numerical results for the radial 

function in Table 2 have been plotted in 

Figure 1, and we can see that the increasing 

azimuthal quantum number 𝑙 is followed by 

the increasing slope of 𝑅(𝑟) (Bjorken et al., 

1966).  

 

Table 2. The numerical results of the radial equation for 𝑙 = 0, 𝑙 = 1, and 𝑙 = 2 

𝒓 
𝒍 = 𝟎 𝒍 = 𝟏 𝒍 = 𝟐 

𝑼(𝒓) 𝑹(𝒓) 𝑼(𝒓) 𝑹(𝒓) 𝑼(𝒓) 𝑹(𝒓) 

1.01 0.0170 0.0194 0.0265 0.0302 0.0562 0.0640 

10.01 -0.0451 -0.0257 -0.1406 -0.0802 -0.3184 -0.1816 

20.01 0.0376 0.0216 -0.0860 -0.0494 -1.6285 -0.9370 

30.01 0.0919 0.0530 0.1160 0.0669 -0.9560 -0.5511 

40.01 0.0966 0.0557 0.2653 0.1530 0.3192 0.1842 

50.01 0.0707 0.0408 0.3343 0.1929 1.5291 0.8823 
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𝒓 
𝒍 = 𝟎 𝒍 = 𝟏 𝒍 = 𝟐 

𝑼(𝒓) 𝑹(𝒓) 𝑼(𝒓) 𝑹(𝒓) 𝑼(𝒓) 𝑹(𝒓) 

60.01 0.0302 0.0174 0.3367 0.1943 2.4474 1.4124 

70.01 -0.0149 -0.0086 0.2922 0.1686 3.0313 1.7496 

80.01 -0.0587 -0.0339 0.2174 0.1255 3.3078 1.9093 

90.01 -0.0980 -0.0566 0.1254 0.0724 3.3262 1.9200 

100.01 -0.1314 -0.0759 0.0255 0.0147 3.1390 1.8120 

 
Figure 1. Comparison of radial functions 𝑅(𝑟) in 𝑓(𝑅) theory for 𝑙 = 0, 𝑙 = 1, and 𝑙 = 2 

 

Figure 1 shows the evolution of radial 

wave function as relativistic effects in 𝑓(𝑅) 
are increased with varying Schwrazschild 

radius. We numerically evaluate the 

expression of the radial wave function given 

by Equation (36). As the Schwarzschild 

radius increases (for small 𝑙), the wave 

function moves closer to the sphere (Griffith, 

2004). For 𝜆 → 0, the solution of the radial 

wave function in 𝑓(𝑅) reduced to the general 

relativity (Lehn et al., 2018a). However, the 

authors have previously demonstrated a 

gravitational effect similar to the Klein-

Gordon equation without a 𝜆 parameter 

(standard general relativity). The radial wave 

solution behaves as a damped oscillator, and 

in fact, it is a bound state solution that 

satisfies the boundary condition of being zero 

at infinity. 

In Figure 2, the numerical results of 

radial solution are compared in both 

modified Schwarzschild in 𝑓(𝑅) theory and 

Schwarzschild metric for 𝑙 = 0 and 𝑙 = 1. In 

approximation, for 𝜆 = 0 in Equation (32), 

we get the standard radial function of the 

Klein-Gordon equation in Schwarzschild 

metric (Cruz-Dombriz et al., 2009). In other 

words, the red lines in Figure 2 equal the blue 

lines. It shows that the Klein-Gordon 

equation in 𝑓(𝑅) theory has a more general 

form rather than the standard Klein-Gordon 

equation.
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Figure 2. Comparison of radial functions 𝑅(𝑟) between 𝑓(𝑅)

 
theory and 

standard theory for 𝑙 = 0 and 𝑙 = 1 

 

In Figure 2, we compared the numerical 

results of radial wave function between 𝑓(𝑅) 
theory and general relativity theory for 𝑙 = 0 

and 𝑙 = 1. We can say that the behavior of 

radial wave function in 𝑓(𝑅) theory is 

consistent with general relativity, especially 

in a small radius of 𝑟. We have shown that 

solutions of the Klein-Gordon equation in 

𝑓(𝑅) theory can be computed with ordinary 

numerical methods and that the results are 

consistent with the non-relativistic limit. In 

general relativity theory for 𝑟 fixed, we can 

see that increasing 𝑙 also increases the value 

of 𝑅(𝑟). Still, in 𝑓(𝑅), the value of 𝑅(𝑟) 
decreases because for 𝑟 greater, the radial 

part of Equation (36) is very dominant 

compared to the value of 𝑙. 
The general solution of Klein-Gordon 

equation in 𝑓(𝑅) theory is written by 

𝛹(𝑡, 𝑟, 𝜃, 𝜑) = 𝛹𝑙𝑚(𝑡, 𝑟)

= 𝜅 𝑅(𝑟)𝑌𝑙
𝑚(𝜃, 𝜑)𝑒−𝑖𝐸𝑡  

(37) 

where 𝜅 is a normalization constant. For 𝑙 =
0 and 𝑚 = 0 at 𝑟 = 50.01 constant, we 

found that 

𝛹00 = 𝜅 (
0.00042

𝜋
)

1
2⁄

𝑒𝑖𝐸𝑡 (38) 

for 𝑙 = 1 and 𝑚 = −1,0,1 the solutions are 

𝛹10 = 𝜅 (
0.280

𝜋
)

1
2⁄

𝑐𝑜𝑠 𝜃 𝑒𝑖𝐸𝑡 (39) 

𝛹1,∓1 = ±𝜅 (
0.0140

𝜋
)

1
2⁄

𝑠𝑖𝑛 𝜃 𝑒𝑖(𝐸𝑡∓𝜑) (40) 

and for 𝑙 = 2 and 𝑚 = −2,−1,0,1,2 

𝛹20 = 𝜅 (
0.2433

𝜋
)

1
2⁄

(3 𝑐𝑜𝑠2 𝜃

− 1)𝑒𝑖𝐸𝑡 

(41) 

𝛹2,∓1

= ±𝜅 (
1.460

𝜋
)

1
2⁄

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑒𝑖(𝐸𝑡∓𝜑) 
(42) 

𝛹2,∓2 = 𝜅 (
0.3649

𝜋
)

1
2⁄

𝑠𝑖𝑛2 𝜃 𝑒𝑖(𝐸𝑡∓2𝜑) (43) 

Normalization 

From the numerical solution, the radial 

function associated with the graph is ≈
𝑟1/2 exp(−𝑟). According to Equation (35), 

the normalization of the general solution is 

∫ 𝑑3𝑟
∞

−∞

 𝛹𝑙𝑚
† (𝑡, 𝑟)𝛹𝑙′𝑚′(𝑡, 𝑟) = 1 (44) 

𝜅2∫ 𝑑3𝑟
∞

−∞

 𝑟 exp(−2𝑟)𝑌𝑙
𝑚†(𝜃, 𝜑)𝑌𝑙′

𝑚′(𝜃, 𝜑)

= 1 

(45) 

where 

∫ sin 𝜃 𝑑𝜃
𝜋

0

 ∫ 𝑌𝑙
𝑚†(𝜃, 𝜑)𝑌𝑙′

𝑚′(𝜃, 𝜑)
2𝜋

0

𝑑𝜙

= 𝛿𝑙𝑙′𝛿𝑚𝑚′ 
and the integral of the radial part is 

𝜅2∫ 𝑟3 exp(−2𝑟)
∞

0

𝑑𝑟 = 1 
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The normalization constant is 𝜅 = √
8

3
. 

The numerical solution of the Klein-

Gordon equation in this research is to build a 

mathematical formulation to solve the 

relation of gravitational effect in vacuum 

energy of parallel plates called by Casimir 

effect (Bezerra et al., 2014; Vieira et al., 

2014; Bezerra et al., 2017). This research 

contributed to explaining the gravitational 

effect of the Klein-Gordon equation in 

curved space-time (Lehn et al., 2018a). 

 

CONCLUSION AND SUGGESTION 

We have derived a general solution of the 

Klein-Gordon equation in curved space-time, 

i.e., modified Schwarzschild metric whose 

solutions function as a complex variable. 

Modified Schwarzschild metric has been 

found by extending Einstein's field equation 

using the 𝑓(𝑅) theory. Analytically, we 

obtained the time-dependent Klein-Gordon 

and time-independent solutions shown by 

radial and angular functions. Radial function 

solution as a non-linear differential equation 

form was numerically solved using Python. 

The answer to the angular part depends on 

magnetic quantum number 𝑚 and azimuthal 

quantum number 𝑙. The quantum numbers 

specify the properties of the atomic orbitals 

and the electrons in those orbitals, 

representing the solution of Klein-Gordon. In 

future work, we will continue the formulation 

of this research to solve the vacuum energy 

of the Casimir effect in curved space-time 

and solve the Dirac equation to explain 

fermion particles because Klein-Gordon is 

limited for Boson particles. Using all the 

obtained calculation results of 𝑓(𝑅) theory, 

the collaboration of modified general 

relativity theory to the relativistic quantum 

field is interesting to review. 
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	a simple formulation of Equation (16) is written by

