Modifying the DC Servo Motor Observed by Particle Swarm Optimization Techniques

Arti Saxena, Vishal R Panse, Ardian Asyhari, Rofiqul Umam, Marta Michalska-Domańska, Aparna Dixit

Abstract


The PID controller's optimized tuning improves the control system's functionality. This work presented the tuning of the PID/FOPID controller by the conventional Ziegler-Nichols (ZN) method and the Particle Swarm Optimization (PSO) algorithm. The PID controller is the most popular in the industry because it is simple to implement, has good computing ability, and provides a robust system. These methods are implemented on the DC servomotor system to optimize the transient responses like rise time (𝑡𝑟), settling time (𝑡𝑠), and peak overshoot (𝑀𝑝) to get a better result. The PID controller tuned by the conventional ZN method gives a longer settling time, a longer rise time, and a higher peak overshoot. The PSO algorithm is utilized to overcome the significant overshoot and considerable settling time obtained in the conventional Ziegler-Nichols method. Analyzing and comparing the MATLAB simulation results, it is observed that PSO algorithms provide a better-optimized response over the ZN method with FOPID controller in respect of less rise time (𝑡𝑟 =0.0392 sec.), less settling time (𝑡𝑠=0.0605 sec.) and peak overshoot (𝑀𝑝=1.92%). The results obtained by the proposed controller provide better reliability and better response.

Keywords


Particle Swarm Optimization (PSO) Algorithm; ZN Method, DC servomotor, PID, FOPID

Full Text:

PDF

References


M. Pravika, J. Jacob, and K. Paul Joseph, “Design of linear electromechanical actuator for automatic ambulatory Duodopa pump,” Eng. Sci. Technol. an Int. J., vol. 31, p. 101056, 2022, doi: 10.1016/j.jestch.2021.09.002.

D. Potnuru, K. Alice Mary, and C. Sai Babu, “Experimental implementation of Flower Pollination Algorithm for speed controller of a BLDC motor,” Ain Shams Eng. J., vol. 10, no. 2, pp. 287–295, 2019, doi: 10.1016/j.asej.2018.07.005.

N. G and K. J, “Performance comparison between PID and Fuzzy logic controllers for the hardware implementation of traditional high voltage DC-DC boost converter,” Heliyon, vol. 10, no. 17, p. e36750, 2024, doi: 10.1016/j.heliyon.2024.e36750.

F. A. Salem, “Controllers and Control Algorithms : Selection and Time Domain Design Techniques Applied in Mechatronics Systems Design ( Review and Research ) Part I,” vol. 2, no. May, pp. 160–190, 2013.

S. Panda, B. K. Sahu, and P. K. Mohanty, “Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization,” J. Franklin Inst., vol. 349, no. 8, pp. 2609–2625, 2012, doi: 10.1016/j.jfranklin.2012.06.008.

L. Sharma, V. L. Chellapilla, and P. Chellapilla, “Socio-inspired evolutionary algorithms: a unified framework and survey,” Soft Comput., vol. 27, no. 19, pp. 14127–14156, 2023, doi: 10.1007/s00500-023-07929-z.

K. Deželak, P. Bracinik, K. Sredenšek, and S. Seme, “Proportional-integral controllers performance of a grid-connected solar pv system with particle swarm optimization and ziegler–nichols tuning method,” Energies, vol. 14, no. 9, 2021, doi: 10.3390/en14092516.

A. Saxena, Y. M. Dubey, M. Kumar, and A. Saxena, “Performance Comparison of ANFIS, FOPID-PSO and FOPID-Fuzzy Tuning Methodology for Optimizing Response of High-Performance Drilling Machine,” IETE J. Res., vol. 69, no. 6, pp. 3497–3510, 2023, doi: 10.1080/03772063.2021.1933625.

A. Saxena, Y. M. Dubey, and M. Kumar, “PSO and fuzzy based tuning mechanism for optimization of transient response in high-performance drilling machine,” 2020 7th Int. Conf. Signal Process. Integr. Networks, SPIN 2020, pp. 1147–1152, 2020, doi: 10.1109/SPIN48934.2020.9071215.

A. Saxena and C. Engineering, “A Comparative Analysis of Optimization Algorithms for Self Tuning,” vol. 8, no. 2, pp. 1–6, 2019.

S. Wu, “A PID controller parameter tuning method based on improved PSO,” Int. J. Adv. Comput. Res., vol. 8, no. 34, pp. 41–46, 2018, doi: 10.19101/IJACR.2017.73302.

S. Kansit and W. Assawinchaichote, “Optimization of PID Controller Based on PSOGSA for an Automatic Voltage Regulator System,” Procedia Comput. Sci., vol. 86, no. March, pp. 87–90, 2016, doi: 10.1016/j.procs.2016.05.022.

T. Samakwong and W. Assawinchaichote, “PID Controller Design for Electro-hydraulic Servo Valve System with Genetic Algorithm,” Procedia Comput. Sci., vol. 86, no. March, pp. 91–94, 2016, doi: 10.1016/j.procs.2016.05.023.

Z. L. Edaris and S. Abdul-Rahman, “Performance Comparison Of Pid Tuning By Using Ziegler-Nichols And Particle Swarm Optimization Approaches In A Water Control System,” Appl. Microbiol. Biotechnol., vol. 85, no. 1, p. 6, 2016.

A. Taeib and A. Chaari, “Tuning optimal PID controller,” Int. J. Model. Identif. Control, vol. 23, no. 2, pp. 140–147, 2015, doi: 10.1504/IJMIC.2015.068872.

A. I. Y. Adav, D. R. S. U. W. Adhwani, and D. R. A. K. W. Adhwani, “Particle Swarm Optimization Based Intelligent Tuning of PID Controller for DC Servo Motor Control,” vol. 03, no. 15, pp. 3106–3110, 2014.

M. Kushwah and A. Patra, “PID Controller Tuning using Ziegler-Nichols Method for Speed Control of DC Motor,” Int. J. Sci. Eng. Technol. Res., vol. 3, no. 13, pp. 2924–2929, 2014.

N. L. S. Hashim, A. Yahya, T. Andromeda, M. R. A. Kadir, N. Mahmud, and S. Samion, “Simulation of PSO-PI controller of DC motor in micro-EDM system for biomedical application,” Procedia Eng., vol. 41, pp. 805–811, 2012, doi: 10.1016/j.proeng.2012.07.247.

R. G. Kanojiya and P. M. Meshram, “Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization,” 2012 Int. Conf. Adv. Power Convers. Energy Technol. APCET 2012, no. Dc, 2012, doi: 10.1109/APCET.2012.6302000.

M. M. R. A. Milani, T. Çavdar, and V. F. Aghjehkand, “Particle swarm optimization - Based determination of Ziegler-Nichols parameters for PID controller of brushless DC motors,” INISTA 2012 - Int. Symp. Innov. Intell. Syst. Appl., 2012, doi: 10.1109/INISTA.2012.6246984.

M. I. Solihin, L. F. Tack, and M. L. Kean, “Tuning of PID Controller Using Particle Swarm Optimization (PSO),” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 1, no. 4, p. 458, 2011, doi: 10.18517/ijaseit.1.4.93.

Bassi, Mishra, and Omizegba, “Automatic Tuning Of Proportional-Integral-Derivative (Pid) Controller Using Particle Swarm Optimization (Pso) Algorithm,” Int. J. Artif. Intell. Appl., vol. 2, no. 4, pp. 25–34, 2011, doi: 10.5121/ijaia.2011.2403.

S. M. GirirajKumar, D. Jayaraj, and A. R. Kishan, “PSO Based Tuning of a PID Controller for a High Performance Drilling Machine,” Int. J. Comput. Appl., vol. 1, no. 19, pp. 12–18, 2010, doi: 10.5120/410-607.

N. Thomas and P. Poongodi, “Position Control of DC Motor Using Genetic Algorithm Based PID Controller,” vol. II, pp. 1–5, 2009.

B. Allaoua, A. Laoufi, B. Gasbaoui, and A. Abderrahmani, “Neuro-Fuzzy DC motor speed control using particle swarm optimization,” Leonardo Electron. J. Pract. Technol., vol. 8, no. 15, pp. 1–18, 2009.

A. Oonsivilai and B. Marungsri, “Optimal PID Tuning of Power System Stabilizer for Multi-machine Power System using Particle Swarm Optimization,” Proc. 12th Wseas Int. Conf. Circuits, vol. 3, no. 6, pp. 345–350, 2008.

R. E. Haber, R. Haber-Haber, R. M. Del Toro, and J. R. Alique, “Using simulated annealing for optimal tuning of a PID controller for time-delay systems. An application to a high-performance drilling process,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4507 LNCS, pp. 1155–1162, 2007, doi: 10.1007/978-3-540-73007-1_140.

R. Haber-Haber, R. Haber, M. Schmittdiel, and R. M. del Toro, “A classic solution for the control of a high-performance drilling process,” Int. J. Mach. Tools Manuf., vol. 47, no. 15, pp. 2290–2297, 2007, doi: 10.1016/j.ijmachtools.2007.06.007.

J. min Li, Y. C. Liou, and L. jun Zhu, “Optimization of PID parameters with an improved simplex PSO,” J. Inequalities Appl., vol. 2015, no. 1, 2015, doi: 10.1186/s13660-015-0785-2.

S. J. D. V. R. Panse, N. S. Kokode, A. N. Yerpude, “Luminescence Investigation of trivalent Dy and Tb doped KAlPO4 Cl phosphor for solid state lighting,” Int. J. Photonics Opt. Technol., pp. 21–25, 2016.

P. R. Kumar, A. Pradesh, V. N. Babu, and A. Pradesh, “Position control of servo systems using PID controller tuning with soft computing optimization techniques,” vol. 3, no. 11, pp. 976–980, 2014.

C. Ganesh, B. Abhi, V. P. Anand, S. Aranvind, R. Nandhini, and S. K. Patnaik, “DC Position Control System -Determination of Parameters and Significance on System Dynamics,” ACEEE Int. J. Electr. Power Eng., vol. 3, no. 1, pp. 1–5, 2012, [Online]. Available: http://hal.archives-ouvertes.fr/docs/00/74/68/91/PDF/82.pdf

S. J. D. v. r. Panse, N. S. Kokode, “Preparation , characterization and luminescent properties of LiBO 2 : Tb 3 + green emitting phosphor for solid state lighting,” vol. 8, no. December, pp. 4–6, 2018.

Z. Yang, Z. Zhao, Y. Wen, and Y. Wang, “ ChemInform Abstract: Structure and Luminescence Properties of Bi 3+ Activated Ca 12 Al 14 O 32 Cl 2 Phosphors. ,” ChemInform, vol. 44, no. 25, pp. 1542–1546, 2013, doi: 10.1002/chin.201325005.

M. Zamani, M. Karimi-Ghartemani, N. Sadati, and M. Parniani, “Design of a fractional order PID controller for an AVR using particle swarm optimization,” Control Eng. Pract., vol. 17, no. 12, pp. 1380–1387, 2009, doi: 10.1016/j.conengprac.2009.07.005.

V. R. Panse, N. S. Kokode, and S. J. Dhoble, “Tb3+ doped Sr2(BO3)Cl green emitting phosphor for solid state lighting,” Adv. Mater. Lett., vol. 5, no. 10, pp. 604–610, 2014, doi: 10.5185/amlett.2014.amwc432.

R. Singhal, S. Padhee, and G. Kaur, “Design of Fractional Order PID Controller for Speed Control of DC Motor,” Int. J. Sci. Res. Publ., vol. 2, no. 6, pp. 1–8, 2012.

A. N. Yerpude, V. V Shimde, V. R. Anse, S. J. Dhoble, and N. S. Kokode, “Luminescence Properties Of Sral2b2o7:Eu3+ Phosphor For Green Lighting Technology,” Int. J. Curr. Eng. Sci. Res., vol. 5, no. 1, pp. 28–30, 2018.

B. Allaoua and B. Mebarki, “Intelligent PID DC motor speed control alteration parameters using particle swarm optimization,” Artif. Intell. Resour. Control Autom. Eng., no. 14, pp. 3–14, 2012, doi: 10.2174/978160805126711201010003.

P. Shah and S. Agashe, “Review of fractional PID controller,” Mechatronics, vol. 38, pp. 29–41, 2016, doi: 10.1016/j.mechatronics.2016.06.005.

C. R. A. Silva, V. C. Panuci, M. R. Coutinho, W. A. S. Conceição, and C. M. G. Andrade, “Analysis of the effects of recycling on process control,” Polish J. Chem. Technol., vol. 25, no. 2, pp. 43–55, 2023, doi: 10.2478/pjct-2023-0016.




DOI: http://dx.doi.org/10.24042/ijecs.v4i2.25071

Refbacks

  • There are currently no refbacks.


Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.