Polarization and Phase Control of Electromagnetic Waves in Periodic and Quasiperiodic Photonic Crystals using Fullerene and Tellurium Nanolayers

Shalaw Saman Khalid, Sana Latif Ahmed, Saman Othman Abdula, Shene Aziz Abdurahman

Abstract


This study presents the phase control and polarization of electromagnetic waves emitted in quasiperiodic crystals such as Fibonacci, T-M, DP, and RS and the periodic structure of a photonic crystal consisting of fullerene and tellurium nanoscales in near-infrared -visible wavelengths. By examining the arrangement of layers in quasi-periodic crystals, which, like periodic structures, possess band gaps that impede the transmission of electromagnetic waves, we can determine the specific region where the photonic band gap (PBG) is formed for both transverse electric (TE) and transverse magnetic (TM) polarization waves. Subsequently, after examining the transmitted light that passed through our structure, we have identified the band gap of different structures. Also, we have plotted the phase changes in the center and edges of the band gap. After taking into account the magnitude of the electric field and the phase difference, it becomes evident that when elliptically polarized light is transmitted, a tilt angle is seen corresponding to the angle of polarization. The paper used the renowned transfer matrix approach. According to our research, the suggested design enables the creation of very condensed phase controllers, such as phase retarders and polarizers.


Keywords


Photonic crystal ، Transfer matrix method, Fullerene, Elliptical polarization, Photonic bandgap

Full Text:

PDF

References


E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys Rev Lett 58, 1987, doi: https://doi.org/10.1103/PhysRevLett.58.2059.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys Rev Lett 58, 1987, doi: https://doi.org/10.1103/PhysRevLett.58.2486.

P. Yeh, M. Hendry, “Optical Waves in Layered Media,” Phys Today 43, 1990, doi: https://doi.org/10.1063/1.2810419.

Y. Trabelsi, N. B. Ali, F. Segovia- Chaves, et al, “Photonic band gap properties of one-dimensional photonic quasicrystals containing Nematic liquid crystals,” 2020, Results Phys 19, doi: https://doi.org/10.1016/j.rinp.2020.103600.

M. Bellingeri, F. Scotognella, A. Chiasera, et al, “One-dimensional disordered photonic structures with two or more materials,” 2018, doi: 10.48550/arXiv.1803.11375.

S. Wang, X. Yang, C. T. Liu, “Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures,” Physics Letters, Section A: General, Atomic and Solid State Physics 378, 2014, doi: 10.1016/j.physleta.2014.03.010.

A. N. Poddubny, E. L. Ivchenko “Photonic quasicrystalline and aperiodic structures,” Physica E Low Dimens Syst Nanostruct 42, 2010, doi: https://doi.org/10.1016/j.physe.2010.02.020.

F. Segovia-Chaves F, Y. Trabelsi, T.A. Taha, “Coupling photonic quasicrystals with a one-dimensional critical high-temperature superconducting cavity,” Optik (Stuttg) 281, 2023, doi: 10.1016/j.ijleo.2023.170847.

M. Song, W. Jin W, S. Fu, et al, “Light wave propagation and diffraction inhibition in three-dimensional photonic quasicrystal lattices,” Results Phys 52, doi: https://doi.org/10.1016/j.rinp.2023.106884.

Y. Bouazzi, K. Kanzari, “Interferential polychromatic filters based on the quasi-periodic one-dimensional generalized multilayer Thue-Morse structures,” Optica Applicata 39, 2009.

Y. Trabelsi, F. Segovia-Chaves, N. B. Ali, “Tunable defect modes through the (YBCO-Yttria) based on Octonacci photonic quasicrystals,” Results Phys 44, 2023, doi: https://doi.org/10.1016/j.rinp.2022.106176.

S. Zirak-Gharamaleki S, “Narrowband optical filter design for DWDM communication applications based on Generalized Aperiodic Thue-Morse structures,”Opt Commun 284, 2011, doi: https://doi.org/10.1016/j.optcom.2010.09.045.

H. Rahimi, “Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range,” Opt Mater (Amst) 57, 2016, doi: 10.1016/j.optmat.2016.04.022.

J Wu, “TPP-assisted multi-band absorption enhancement in graphene based on Fibonacci quasiperiodic photonic crystal,” Results Phys 33, 2022, doi: https://doi.org/10.1016/j.rinp.2022.105210.

H. F. Zhang, J. P. Zhen, W. P. He, “Omnidirectional photonic band gaps enhanced by Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals,” Optik (Stuttg) 124, 2013, doi: 10.1063/1.4765063.

C. H. Costa, M. S. Vasconcelos, U. L. Fulco, et al, “Thermal radiation in one-dimensional photonic quasicrystals with graphene,” Opt Mater (Amst) 72, 2017, doi: https://doi.org/10.1016/j.optmat.2017.07.029.

B. K. Singh, P. C. Pandey, “Influence of graded index materials on the photonic localization in one-dimensional quasiperiodic (Thue-Mosre and Double-Periodic) photonic crystals,” Opt Commun 333, 2014, doi: https://doi.org/10.1016/j.optcom.2014.07.043.

H. A. Gómez-Urrea, J. Escorcia-García, C. A. Duque, et al, “Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers,” Photonics Nanostruct 27, 2017, doi: https://doi.org/10.1016/j.photonics.2017.08.001.

F. Segovia-Chaves, H. A. Elsayed, “Transmittance spectrum in a Rudin Shapiro quasiperiodic one-dimensional photonic crystal with superconducting layers,” Physica C: Superconductivity and its Applications 587, 2021, doi: 10.1016/j.physc.2021.1353898.

N. T. K. Thanh, S. J. A. Biggs, Darr, “Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences: Preface,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 2010, doi: https://doi.org/10.1098/rsta.

S. K. Tiwari, V. Kumar, A. Huczko, et al, “Magical Allotropes of Carbon: Prospects and Applications,” Critical Reviews in Solid State and Materials Sciences 41, 2016, doi: https://doi.org/10.1080/10408436.2015.1127206.

P. S. Karthik, A. L. Himaja, S. P. Singh, “Carbon-allotropes: Synthesis methods, applications and future perspectives,” Carbon Letters 15, 2014, doi: 10.5714/CL.2014.15.4.219.

K. Tanigaki, I. Hirosawa, T. W. Ebbesen, et al, “Superconductivity in sodium-and lithium-containing alkali-metal fullerides,” Nature 356, 1992, doi: https://doi.org/10.1038/356419a0.

M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, et al, “Superconductivity at 28 K in Rb𝑥C60,” Phys Rev Lett 66, 1999, doi: https://doi.org/10.1103/PhysRevLett.66.2830.

W. Krätschmer, L. D. Lamb, “Fostiropoulos K, et al, Solid C60: a new form of carbon,” Nature 347, 1990, doi: https://doi.org/10.1038/347354a0.

] Q. Xue, Y. Ling, T. Ogino, et al, “C60 single crystal films on GaAs(001) surfaces,” Thin Solid Films 281–282, 1996, doi: https://doi.org/10.1016/0040-6090(96)08710-X.

F. Akkurt, “Laser induced electro-optical characterization of anthraquinone dye and fullerene C60 doped guest-host liquid crystal systems,” J Mol Liq 194, 2014, doi: https://doi.org/10.1016/j.molliq.2014.02.040.

E. V. Maistruk, I. P. Koziarskyi, D. P. Koziarskyi, et al, “Electrical properties of the Cu 2 O/Cd 1 - x Zn x Te heterostructure,” Journal of Nano- and Electronic Physics 11, 2019, doi: https://doi.org/10.21272/jnep.11(2).02007.

S. K. Srivastava, S. P. Ojha, “Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films,” Progress in Electromagnetics Research 74, 2007, doi: https://doi.org/10.2528/PIER07050202.

E. Giudice, E. Magnano, S. Rusponi, “Morphology of C60 thin films grown on Ag(001),” Surf Sci 405, 1998, doi: https://doi.org/10.1016/S0039-6028(98)00171-X.

P. Han, B. Xu, J. Liang, et al, “Band gaps of two-dimensional photonic crystal structure using fullerene films,” Physica E Low Dimens Syst Nanostruct 25, 2004, doi: https://doi.org/10.1016/j.physe.2004.05.009.

C. J. Wu, “Transmission and reflection in a periodic superconductor/dielectric film multilayer structure,” J Electromagn Waves Appl 19, 2005, doi: https://doi.org/10.1163/156939305775570468.

X. Bingshe, H. Peide, W. Liping, et al, “Optical properties in 2D photonic crystal structure using fullerene and azafullerene thin films,” Opt Commun 250, 2005, doi: https://doi.org/10.1016/j.optcom.2005.02.017.

H. Rahimi, “The Highest and Lowest Photonic Bandwidths, Absorption Coefficients and Field Localizations among Common 1D Quasiperiodic Structures Containing Graphene and Silicon Dioxide,” Silicon 12, 2020, doi: https://doi.org/10.1007/s12633-019-00132-6.

Z. Saleki, S. R. Entezar, A. Madani, “Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer,” Appl Opt 56, 2017, doi: https://doi.org/10.1364/AO.56.000317.

H. Rahimi, A. Namdar, S. Roshan Entezar, et al, “Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials,” Progress in Electromagnetics Research 102, 2010, doi: https://doi.org/10.2528/PIER09122303.

M. Mantela, K. Lambropoulos, M. Theodorakou, et al, Quasi-periodic and fractal polymers: Energy structure and carrier transfer,” Materials 12, 2019, doi: https://doi.org/10.3390/ma12132177.

I. M. Felix, L. F. C. Pereira, “Thermal conductivity of Thue–Morse and double-period quasiperiodic graphene-hBN superlattices,” Int J Heat Mass Transf 186, 2022, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122464.

A. Biswal, “Periodic and quasi-periodic one-dimensional extrinsically magnetized photonic crystals with robust photonic bandgaps,” Appl Opt 62, 2023, doi: https://doi.org/10.1364/AO.502541.

A. Dell, A. Krynkin, K. V. Horoshenkov, “The use of the transfer matrix method to predict the effective fluid properties of acoustical systems,” Applied Acoustics 182, 2021, doi: https://doi.org/10.1016/j.apacoust.2021.108259.

T. Zhan, X. Shi, Y. Dai, et al, “Transfer matrix method for optics in graphene layers,” Journal of Physics Condensed Matter 25, 2013, doi: https://doi.org/10.1088/0953-8984/25/21/215301.

B. D. Smith, S. H. Ward, “on the computation of polarization ellipse parameters,” Geophysics 39, 1974, doi: https://doi.org/10.1190/1.1440474.

A. Biswal, R. Kumar, C. Nayak, et al, “Photonic bandgap characteristics of GaAs/AlAs-based one-dimensional quasi-periodic photonic crystal,” Optik (Stuttg) 234, 2021, doi: https://doi.org/10.1016/j.ijleo.2021.166597.

O. Habli, J. Zaghdoudi, M. Kanzari, “Omnidirectional photonic band gap based on nonlinear periodic and quasi-periodic photonic crystals,” Appl Phys B 128, 2022, doi: https://doi.org/10.1007/s00340-022-07845-4.

X. Li, Q. Kong, X. Wang, et al, “Transmission properties in Fibonacci quasi-periodic photonic crystal containing negative-zero-positive index metamaterials,” Commun Theor Phys 75, 2023, doi: https://doi.org/10.1088/1572-9494/acb3b6.

C. Dong, Y. Zheng, K. S. Shen, et al, “Polarization-independent wide-angle flexible multiband thermal emitters enabled by layered quasi-periodic photonic crystal”. Opt Laser Technol 156, 2022, doi: https://doi.org/10.1016/j.optlastec.2022.108474.




DOI: http://dx.doi.org/10.24042/ijecs.v4i2.23618

Refbacks

  • There are currently no refbacks.


Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.