

International Journal of Electronics and Communications System

Volume 4, Issue 2, 87-97.
ISSN: 2798-2610

http://ejournal.radenintan.ac.id/index.php/IJECS/index
DOI: 10.24042/ijecs.v4i2.23821

 Corresponding author:
Universitas Bumigora, Mataram, INDONESIA. husain@universitassbumigora.ac.id
© 2024 The Author(s). Open Access. This article is under the CC BY SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Automation of Software Defined Network (SDN) Configuration
Management Based on Proxmox with Ansible

Khairan Marzuki

Universitas Bumigora, Mataram,
INDONESIA

Husain*
Universitas Bumigora, Mataram,

INDONESIA

Zikriati Apriliana
Universitas Bumigora, Mataram,

INDONESIA

Article Info Abstract

Article history:

Received: August 18, 2024
Revised: October 10, 2024
Accepted: December 02, 2024
Published: December 15, 2024

Automation of software-defined networking (SDN) in Proxmox VE 8.1 enhances
virtual network management by improving efficiency, scalability, and the speed of
network configuration changes. This study aims to automate SDN configuration
management in Proxmox VE using Ansible and evaluate its performance. The
research follows the Network Development Life Cycle (NDLC) method, consisting of
six stages: Analysis, Design, Simulation Prototyping, Implementation, Monitoring,
and Management. Automation was implemented successfully using an Ansible
playbook to manage creating and deleting zones, VNets, subnets, IP gateways, and
DHCP ranges. The automated process was tested over three trials, with creation
times of 23, 20, and 21 seconds and deletion times of 20, 19, and 20 seconds,
respectively. By contrast, the manual process required 6 minutes 6 seconds for
creation and 2 minutes 37 seconds for deletion. These results demonstrate that
automation using Ansible significantly reduces configuration time, offering a more
efficient and reliable approach than manual methods. The findings highlight the
potential of Ansible to streamline SDN management in Proxmox VE, saving time,
energy, and resources while ensuring scalability and consistency in virtualized
network environments.

Keywords:

Network Automation;
Software-Defined Networking
(SDN);
Proxmox VE;
Virtual Network Management.

To cite this article: K. Marzuki, H. Husain, and Z. Apriliana. “Automation of Software Defined Network (SDN)
Configuration Management Based on Proxmox with Ansible, ” Int. J. Electron. Commun. Syst., vol. 4, no. 2, pp. 87-97,
2024.

INTRODUCTION
The rapid development of information

technology continues to enhance various
aspects of human life. Among these
advancements, virtualization technology has
emerged as a transformative innovation,
enabling a single physical machine to
simultaneously act as a shared resource for
multiple services [1], [2]. Proxmox Virtual
Environment (VE), an open-source
virtualization platform based on Linux Debian,
is widely utilized for managing hardware and
operating system virtualizations. It facilitates
container management, virtual machines,
storage, virtual networks, and high-availability
clusters through a web interface and command
line [3]. However, manual management of
Proxmox configurations often leads to human

errors, such as incorrect data or code input,
potentially causing system errors or downtime
[4].

Software Defined Networking (SDN) is a
significant advancement in network
virtualization, particularly in Proxmox VE. SDN
in Proxmox VE offers enhanced flexibility by
separating control and data planes, enabling
comprehensive control over virtual network
guests through software-defined
configurations [5]. Among the automation
tools available, Ansible has become an open-
source platform for provisioning servers,
managing configurations, and deploying
applications [6].

Previous studies have addressed various
aspects of network automation. For example,
Ikhsan [7] focused on implementing Network

http://ejournal.radenintan.ac.id/index.php/IJECS/index
https://dx.doi.org/10.24042/ijecs.v4i2.23821
mailto:husain@universitassbumigora.ac.id
file:///C:/Users/My%20Windows/Downloads/(https:/creativecommons.org/licenses/by-sa/4.0/)

88 Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97

Controllers for centralized configuration
management of AAA protocols, DNS, and
monitoring infrastructure. Similarly, Marzuki
et al. [8] demonstrated the automation of
virtual network configurations using VSwitch
and Ansible. Chandrawaty and Hariyadi [9]
investigated using Ansible Playbooks to
automate VLAN configurations on Cisco
devices. However, these studies focus on Cisco-
based network controllers, quality of service
(QoS) applications, and VLAN or VXLAN
automation.

Despite these advancements, significant
gaps remain in managing Proxmox VE SDN
configurations. Existing studies fail to address
comprehensive control over virtual network
guests, the separation of features and
limitations for virtual networks, and the
integration of monitoring capabilities for
VNets and connected guests. Moreover,
managing configurations for multiple zones,
Vnets, and subnets remains time-consuming
and resource-intensive [10], [11].

This study proposes automating SDN
network configuration management on
Proxmox VE using Ansible as an automation
tool to address these limitations. The proposed
approach minimizes configuration errors and
accelerates processes by automating tasks
such as creating and deleting Simple Zones,
Vnets, Subnets, and DHCP ranges. Unlike
previous research, this study provides a
detailed design and implementation of
automated Proxmox VE SDN configuration
management, including monitoring
capabilities through the IP Address
Management (IPAM) menu. The novelty of this
research lies in its integration of
comprehensive automation and monitoring
functionalities to streamline network
management while reducing human error.
This innovation is expected to significantly
improve the efficiency and reliability of SDN
management in Proxmox VE environments.

METHOD
This research employs the Network

Development Life Cycle (NDLC) method, a
structured framework widely used in network-
related projects to streamline system
development and ensure reliability. The NDLC
method builds upon established processes,
such as business strategy planning, application
development lifecycle, and data distribution

analysis [12], [13]. It comprises six stages:
analysis, design, simulation prototyping,
implementation, monitoring, and management.
However, this study focuses on three primary
stages: Analysis, Design, Simulation, and
Prototyping, described in detail below.

Analysis Stage

The authors identified inefficiencies and
challenges associated with manually
configuring Proxmox-based SDN environments
in the analysis stage. Common issues include
high susceptibility to human error—such as
misconfigurations—that can disrupt system
functionality and require significant
rectification time. Data on frequently
encountered problems in manual SDN
configuration were collected and analyzed
[14], [15]. This analysis formed the basis for
designing an automation system using Ansible,
addressing key requirements such as
minimizing configuration errors and
enhancing operational efficiency. By focusing
on these issues, this stage provided a strong
foundation for tailoring automation solutions
specifically for Proxmox VE environments.

Design Stage
The design stage centered on developing a

simulation for automating Proxmox-based
SDN configurations using Ansible. This process
involved designing IP address configurations
to establish a structured and efficient virtual
network environment. The automation
workflow was developed using Ansible
Playbooks to streamline tasks such as creating
and deleting zones, VNets, subnets, and DHCP
ranges [6], [16]. These automated
configurations were designed to ensure
scalability and reduce manual interventions,
improving reliability.

Network Design

The network topology utilized in this study
is designed to optimize the automation
process for SDN configurations [17], [18], [19].
The setup consists of two primary
components: an Ansible server and a Proxmox
VE server. The Ansible server is connected to
the internet via port ens33, with its IP address
dynamically allocated through NAT and DHCP,
resulting in a configuration of 192.168.169.1.
Meanwhile, the Proxmox VE server establishes
a static connection with the Ansible server

Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97 89

through port vmbr0, using the static IP
address 192.168.169.10. This direct and
structured connection between the two
servers facilitates seamless communication,
ensuring efficient execution of automated SDN

configuration tasks. The network topology is
depicted in Figure 1, showcasing the
streamlined design that underpins the
automation framework.

Figure 1. The Network Design

Test Network Design

The test network design, illustrated in
Figure 2, was developed using virtualization
tools to establish a controlled and flexible
testing environment [20], [21], [22]. A
Windows 11 host, connected directly to the
internet, served as the base system for the
setup. VMware Workstation version 16 Pro
was utilized on this host to create two virtual
machines. The first virtual machine functioned
as an Ansible server, responsible for executing

automation scripts. The second virtual
machine operated as a Proxmox VE server,
managing Software Defined Networking (SDN)
configurations, including creating and deleting
zones, VNets, subnets, and DHCP ranges. As
emphasized in related studies, this virtualized
setup provided a robust platform for testing
the automation processes, ensuring
reproducibility and adaptability to various
network scenarios.

90 Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97

Figure 2. Test Network Design

IP Addressing Design

The IP addressing for this study uses Class
C networks with five address blocks:
192.168.174.0/24, 192.168.169.0/24,
192.168.100.0/24, 192.168.101.0/24, and

192.168.102.0/24. Each network is configured
to support specific SDN zones and DHCP
ranges, as shown in Table 1.

Table 1. IP Addressing Design

Device int Description IP Address Gateway

Server ansible ens 33 DHCP from NAT cloud 192.168.174.128/24 192.168.174.1

Ens 34 Host-only 192.168.169.1

Server Proxmox Vmbr0 Host-only 192.168.169.10
 Zone sdn01

bridge

Zones created on a proxmox-based SDN 192.168.100.0/24

Zone sdn02 192.168.101.0/24

Zone sdn03 192.168.102.0/24

100 srv.ubg.local Which CT in zone sdn01

DHCP

192.168.100.1

101 srv.ubg.local

102 srv.ubg.local CT that is on zone sdn02

DHCP

192.168.101.1

103 srv.ubg.local

104 srv.ubg.local CT that is on zone sdn03

DHCP

192.168.102.1

105 srv.ubg.local

Automation System Design

The automation system design focuses on
developing an efficient workflow using Ansible
to manage SDN features in Proxmox VE. The
process begins with a network administrator
creating and deploying Ansible Playbooks and
YAML scripts to automate various SDN
configurations. These scripts are designed to
handle creating and deleting zones, VNets,
subnets, DHCP ranges, and containers,
ensuring that all tasks are executed

consistently and without manual intervention.
Once the automation scripts are deployed, the
system undergoes rigorous testing to verify
that all configurations function seamlessly,
enabling reliable and streamlined network
management. The complete automation
workflow is illustrated in Figure 3, which
outlines the sequence of tasks and their
integration within the Proxmox VE
environment.

Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97 91

Figure 3. Automation System Flow Design

Prototyping Simulation Stage

In the prototyping simulation stage, a
system simulation was developed to validate
the automation process. The authors
configured virtualization devices using
Proxmox VE and Ansible servers, ensuring
accurate system behavior before deployment.
The setup included testing connectivity
between containers (CTs) in the same and
different zones and verifying IP address
allocation in the IPAM menu.

Installation and Configuration Stage

The installation and configuration stage
involved setting up all necessary components
to enable automation and management of the
SDN environment. First, the Proxmox VE
server was installed and configured to handle
the creation of zones, VNets, subnets, and
DHCP ranges, serving as the primary
virtualization platform. Next, the Ansible
server was established with a collection of
Playbooks and YAML scripts specifically
designed to automate SDN management tasks,
including creating and deleting network
configurations. Finally, a Windows 11 client
was configured to establish connections with
the Proxmox VE and Ansible servers, enabling
simulation and testing of the automated
processes. This comprehensive setup ensured
a functional and efficient environment for

implementing and verifying the automation
workflow.
Test Scenario

The test scenarios conducted in this study
aimed to evaluate the efficiency and reliability
of SDN configuration management in Proxmox
VE. First, manual configuration testing was
performed to measure the time required to
create and delete three zones and VNets
manually. This process provided a baseline for
comparing the efficiency of manual
configurations. Next, automated configuration
testing was conducted using Ansible to
automate the creation and deletion of zones
and VNets. This step highlighted the time-
saving advantages of automation compared to
manual efforts. Finally, connectivity and IP
allocation testing was carried out to verify the
connectivity of containers (CTs) both within
the same zone and across different zones. The
tests also included validating internet access
and ensuring accurate IP address allocation via
the IPAM menu, reinforcing the reliability of
automated configurations. These scenarios
provided comprehensive insights into the
benefits of automation in managing SDN
configurations effectively.

RESULTS AND DISCUSSION
This section provides a detailed analysis

of the results obtained from the manual and
automated configuration tests, focusing on

92 Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97

time efficiency, configuration success rates,
and connectivity validation. The findings are
critically discussed to highlight the
implications and relevance of automation in
Software-Defined Network (SDN)
management.

1. Manual Configuration Analysis
Table 2 summarizes the results of the

manual configuration process in Proxmox-
based SDN. This includes creating and deleting
zones, VNets, subnets, gateways, and DHCP
ranges for each zone.

Table 2. Manual Creation and Deletion Analysis Table

Zone

Vnet
Success

Time subnets gateway DHCPranges

Creation
Sdn01    

6 minutes 6 seconds Sdn02    

Sdn03    

Deletion

Sdn01     2 minutes 37 seconds
Sdn02    

Sdn03    

The results indicate that the manual

configuration process, although successful, is
time-consuming. On average, manually
creating configurations took 6 minutes and 6
seconds, while deletion required 2 and 37
seconds. These findings are consistent with
Madamidola [23], who identified manual
processes as prone to inefficiencies and human
error, particularly in larger-scale networks.

The prolonged duration of manual
configuration is a significant limitation,
especially in dynamic environments where
frequent updates and reconfigurations are

necessary. As network complexity increases,
manual processes can introduce operational
delays and inconsistencies. This reinforces
Ajiga et al. [24] 's argument, which emphasizes
the need for automation to mitigate these
challenges.

2. Automated Configuration Analysis

The automation results using Ansible for
creating and deleting configurations are
presented in Tables 3 and 4. The data
highlights the efficiency of automation
compared to manual processes

Table 3. Analysis of Automated Creation Results
Creation

zone vnets Success Time

subnets gateway DHCP ranges

First Test

Sdn01    
23 seconds Sdn02    

Sdn03    

Second Test

Sdn01    
20 seconds Sdn02    

Sdn03    

Third Test

Sdn01    
21 seconds Sdn02    

Sdn03    

Table 3 provides information on the

configuration management process for
creating zones, vnets, subnets, IP gateways,

and DHCP ranges on an SDN based on
Proxmox VE. During the automation process,
the creation time was measured across three

Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97 93

tests. The automation for creating zones, vnets,
subnets, IP gateways, and DHCP ranges was
successful, with the first test taking 23

seconds, the second 20 seconds, and the third
21 seconds. The analysis of the automated
deletion process is shown in Table 4.

Table 4. Analysis of Automated Deletion Results

Deletion

zone vnets Success Time

subnets gateway DHCP ranges

First Test

Sdn01    
20 seconds Sdn02    

Sdn03    

Second Test

Sdn01    
19 seconds Sdn02    

Sdn03    

Third Test

Sdn01    
20 seconds Sdn02    

Sdn03    

Table 4 provides information on the

configuration management process for
deleting zones, vnets, subnets, IP gateways,
and DHCP ranges on an SDN based on
Proxmox VE. During the automation process,
the deletion time was measured over three
tests. The automated deletion of zones, vnets,
subnets, IP gateways, and DHCP ranges was
successful, with the first test taking 20
seconds, the second 19 seconds, and the third
20 seconds. At this stage, an analysis is
conducted on creating CTs for each zone with
two CTs. Connectivity between CTs within the
same zone and between CTs in different zones
is checked. Additionally, an analysis is
performed to ensure that the CTs have internet
access and the correct IP address allocation in
the IPAM menu. These findings corroborate

prior research by Chandrawaty and Hariyadi
[25], who demonstrated similar time savings
using Ansible for VLAN configuration
management.

Moreover, the consistency observed in
automation results eliminates the risks
associated with human error. As El Rajab et al.
[26] and Ramesh et al. [27] noted, automation
ensures that configurations are applied
uniformly across all network components,
improving overall reliability and scalability.

3. Connectivity and IP Allocation Validation

Table 5 illustrates the results of
connectivity tests between containers (CTs)
within the same and different zones, along
with IP allocation and internet access
validation.

Table 5. CT Connectivity Analysis Results in Zone

CT

ID

ZONE Internet

Access

CT Connectivity on

Different Zones

CT Connectivity to

Different Zones

IPAM IP

Allocation

100 Sdn01    

101    

102 Sdn02    

103    

104 Sdn03    

105    

Table 5 presents information related to

the results of CT connectivity checks that have
been made where tests are carried out related
to the success of each CT in the zone that has

been created by conducting connectivity tests
between CTs in the same zone, testing
connectivity between CTs in different zones
and testing each CT to access the internet so

94 Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97

that CT gets internet services and finally
conducting trials related to IP allocation at
IPAM so that it can be seen in the table that it
was successfully carried out related to
checking connectivity between CTs in the same
zone where in this trial pinging was carried
out between CT IDs 100 and 101 in zone sdn01
and carried out to all CTs in each zone, after
that, a connectivity check between CTs in
different zones was carried out on CT IDs 102
and 103 which pinged the CT IP Address in
each zone and was successfully connected, CT
trials got internet access by pinging
google.com on each CT and successfully get
internet access. Finally, the IPAM section will
be tested to see where each CT ID is
successfully in the IPAM section in each zone.

The connectivity and IP allocation tests
demonstrate the effectiveness of Ansible
automation in maintaining network integrity.
All CTs successfully communicated within and
across zones and accessed the internet without
issues. Furthermore, IP allocation through the
IPAM module was accurate and consistent.

These results align with findings from
Aleem et al. [28], Kulkarni et al. [29], and
Gupta [30], who highlighted the importance of
automated IP management systems in
maintaining seamless connectivity in SDN
environments. The results also validate the
robustness of Ansible as a tool for managing
complex network configurations.

The manual and automated configuration
results demonstrate the advantages of
automation in SDN management. Automation
not only reduces configuration times but also
minimizes errors and enhances reliability. As
Muhammad and Munir [31] highlight,
automation is essential for achieving
scalability and consistency in dynamic
network environments.

Future research could explore the
integration of advanced monitoring and
analytics tools into the automation process.
Additionally, incorporating Quality of Service
(QoS) features and real-time performance
metrics could further enhance automation's
utility in SDN management.

LIMITATIONS
Complexity of SDN Infrastructure,

Possible Limitations in SDN, Proxmox as a
Limited Hypervisor, Dependency on Tool
Versions, and Security and Management.

CONCLUSION
The design and implementation of SDN

virtualization configuration management

automation based on Proxmox VE using

Ansible as an automation tool was

successfully applied through an Ansible

playbook. The playbook handled the

configuration for creating and deleting zones,

vnets, subnets, IP gateways, and DHCP

ranges. The process involved creating and

deleting three zones, three vnets, and subnets,

along with their corresponding gateways and

DHCP ranges for each vnet.

Based on three automated tests using

Ansible, the automation process took 23

seconds for the first test, 20 seconds for the

second, and 21 seconds for the third.

Similarly, deletion tests were conducted three

times, with the first test taking 20 seconds,

the second 19 seconds, and the third 20

seconds. Additionally, manual testing for the

creation process took 6 minutes and 6

seconds, while manual deletion took 2

minutes and 37 seconds. Therefore,

automation using Ansible for SDN

configuration management based on

Proxmox VE is faster than manual

configuration, making the automation process

more efficient in terms of time, effort, and

resources.

ACKNOWLEDGEMENTS

We extend our gratitude to all parties
involved in this research for their support and
contributions. Special thanks to the
Department of Computer Science for their
assistance with data collection and analysis.

AUTHORS CONTRIBUTION

HH was responsible for designing the
network architecture and overseeing its
implementation. They also coordinated the
technical development of the project. KM
provided supervision and offered guidance
throughout the research process, reviewed the
methodology and ensured alignment with the
research objectives. ZA contributed by
providing advice on system optimization and
component integration, ensuring that the
research outcomes were achieved.

Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97 95

REFERENCES
[1] T. Borangiu, D. Trentesaux, A. Thomas, P.

Leitão, and J. Barata, “Digital
transformation of manufacturing
through cloud services and resource
virtualization,” Computers in Industry,
vol. 108. Elsevier, pp. 150–162, 2019,
doi:
https://doi.org/10.1016/j.compind.201
9.01.006.

[2] A. Benlian, W. J. Kettinger, A. Sunyaev, T.
J. Winkler, and GUEST EDITORS, “Special
Section: The Transformative Value of
Cloud Computing: A Decoupling,
Platformization, and Recombination
Theoretical Framework,” J. Manag. Inf.
Syst., vol. 35, no. 3, pp. 719–739, Jul.
2018, doi:
https://doi.org/10.1080/07421222.201
8.1481634.

[3] E. Casalicchio and S. Iannucci, “The state‐
of‐the‐art in container technologies:
Application, orchestration and security,”
Concurr. Comput. Pract. Exp., vol. 32, no.
17, p. e5668, Sep. 2020, doi:
https://doi.org/10.1002/cpe.5668.

[4] M. Šimon, L. Huraj, and N. Búčik, “A
Comparative Analysis of High
Availability for Linux Container
Infrastructures,” Future Internet, vol. 15,
no. 8, p. 253, 2023, doi:
https://doi.org/10.3390/fi15080253.

[5] Π. Λıotaλ\acute\etaς, “Network Function
Virtualization (NFV) technologies and
their impact on energy consumption in
large-scale data centers,” Master’s
Thesis, Πανεπıotaστ\acute\etaμıotao
Πεıotaραıota\acuteømegaς, 2024, doi:
http://dx.doi.org/10.26267/unipi_dione
/4129.

[6] M. D. Elradi, “Ansible: A Reliable Tool for
Automation,” Electr. Comput. Eng. Stud.,
vol. 2, no. 1, 2023.

[7] N. Ikhsan, A. A. Sukmandhani, J. Ohliati,
and Y. D. Prabowo, “Design and Build
AAA Server using Free Radius Study
Case Network Security Management at
PT. XYZ,” in 2023 IEEE 9th International
Conference on Computing, Engineering
and Design (ICCED), IEEE, 2023, pp. 1–6,
doi:
https://doi.org/10.1109/ICCED60214.2
023.10425645.

[8] K. Marzuki, M. I. Kholid, I. P. Hariyadi,
and L. Z. A. Mardedi, “Automation of
Open VSwitch-Based Virtual Network
Configuration Using Ansible on Proxmox
Virtual Environment,” Int. J. Electron.
Commun. Syst., vol. 3, no. 1, pp. 11–20,
2023, doi:
https://doi.org/10.24042/ijecs.v3i1.165
24.

[9] N. M. A. Y. Chandrawaty and I. P.
Hariyadi, “Implementasi Ansible
Playbook Untuk Mengotomatisasi
Manajemen Konfigurasi VLAN Berbasis
VTP Dan Layanan DHCP,” J. Bumigora Inf.
Technol. BITe, vol. 3, no. 2, pp. 107–122,
2021, doi:
https://doi.org/10.30812/bite.v3i2.157
7.

[10] K. Zheng, Q. Zheng, P. Chatzimisios, W.
Xiang, and Y. Zhou, “Heterogeneous
vehicular networking: A survey on
architecture, challenges, and solutions,”
IEEE Commun. Surv. Tutor., vol. 17, no. 4,
pp. 2377–2396, 2015, doi:
https://doi.org/10.1109/COMST.2015.2
440103.

[11] S. Zhu et al., “Proactive Telemetry in
Large-Scale Multi-Tenant Cloud Overlay
Networks,” IEEEACM Trans. Netw., 2024,
doi: 10.1109/TNET.2024.3381786.

[12] F. Naim, R. R. Saedudin, and U. Y. K. S.
Hediyanto, “Analysis of wireless and
cable network quality-of-service
performance at Telkom University
landmark tower using network
development life cycle (ndlc) method,”
JIPI J. Ilm. Penelit. Dan Pembelajaran
Inform., vol. 7, no. 4, pp. 1033–1044,
2022, doi:
https://doi.org/10.29100/jipi.v7i4.3192
.

[13] M. E. Arass, K. Ouazzani-Touhami, and N.
Souissi, “Data life cycle: towards a
reference architecture,” Int J, vol. 9,
2020, doi:
10.30534/ijatcse/2020/215942020.

[14] N. Ahmed et al., “Network threat
detection using machine/deep learning
in sdn-based platforms: a
comprehensive analysis of state-of-the-
art solutions, discussion, challenges, and
future research direction,” Sensors, vol.
22, no. 20, p. 7896, 2022, doi:
https://doi.org/10.3390/s22207896.

https://doi.org/10.1016/j.compind.2019.01.006
https://doi.org/10.1016/j.compind.2019.01.006
https://doi.org/10.1080/07421222.2018.1481634
https://doi.org/10.1080/07421222.2018.1481634
https://doi.org/10.1002/cpe.5668
https://doi.org/10.3390/fi15080253
http://dx.doi.org/10.26267/unipi_dione/4129
http://dx.doi.org/10.26267/unipi_dione/4129
https://doi.org/10.1109/ICCED60214.2023.10425645
https://doi.org/10.1109/ICCED60214.2023.10425645
https://doi.org/10.24042/ijecs.v3i1.16524
https://doi.org/10.24042/ijecs.v3i1.16524
https://doi.org/10.30812/bite.v3i2.1577
https://doi.org/10.30812/bite.v3i2.1577
https://doi.org/10.1109/COMST.2015.2440103
https://doi.org/10.1109/COMST.2015.2440103
https://doi.org/10.1109/TNET.2024.3381786
https://doi.org/10.29100/jipi.v7i4.3192
https://doi.org/10.29100/jipi.v7i4.3192
http://dx.doi.org/10.30534/ijatcse/2020/215942020
https://doi.org/10.3390/s22207896

96 Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97

[15] L. Zhu et al., “SDN Controllers: A
Comprehensive Analysis and
Performance Evaluation Study,” ACM
Comput. Surv., vol. 53, no. 6, pp. 1–40,
Nov. 2021, doi:
https://doi.org/10.1145/3421764.

[16] B. Choi and E. Medina, “Is Ansible Good
for Network Automation?,” in
Introduction to Ansible Network
Automation, Berkeley, CA: Apress, pp. 3-
30, 2023, doi:
https://doi.org/10.1007/978-1-4842-
9624-0_1.

[17] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D.
Casillas-Perez, and J. M. Arco, “A survey
on machine learning techniques for
routing optimization in SDN,” IEEE
Access, vol. 9, pp. 104582–104611, 2021,
doi:
https://doi.org/10.1109/ACCESS.2021.3
099092.

[18] A. A. Ibrahim, F. Hashim, A. Sali, N. K.
Noordin, and S. M. Fadul, “A multi-
objective routing mechanism for energy
management optimization in SDN multi-
control architecture,” IEEE Access, vol.
10, pp. 20312–20327, 2022, doi:
https://doi.org/10.1109/ACCESS.2022.3
149795.

[19] D. Bringhenti et al., “Automatic,
verifiable and optimized policy-based
security enforcement for SDN-aware IoT
networks,” Comput. Netw., vol. 213, p.
109123, 2022, doi:
https://doi.org/10.1016/j.comnet.2022.
109123.

[20] R. Wójtowicz, R. Kowalik, D. D.
Rasolomampionona, and K. Kurek,
“Virtualization of protection systems-
tests performed on a large environment
based on data center solutions,” IEEE
Trans. Power Deliv., vol. 37, no. 4, pp.
3401–3411, 2021, doi:
https://doi.org/10.1109/TPWRD.2021.3
128993.

[21] I. Alam et al., “A Survey of Network
Virtualization Techniques for Internet of
Things Using SDN and NFV,” ACM
Comput. Surv., vol. 53, no. 2, pp. 1–40,
Mar. 2021, doi:
https://doi.org/10.1145/3379444.

[22] A. S. Zamani, A. S. A. Shatat, I. A. Khan, M.
M. Akhtar, R. Ayub, and F. Samdani,
“Cloud Network Design and

Requirements for the Virtualization
System for IoT Networks,” IJCSNS, vol.
22, no. 11, p. 727, 2022, doi:
10.22937/IJCSNS.2022.22.11.101.

[23] O. A. Madamidola, O. A. Daramola, K. G.
Akintola, and O. T. Adeboje, “A Review of
existing inventory management
systems,” Int. J. Res. Eng. Sci. IJRES, vol.
12, no. 9, pp. 40–50, 2024.

[24] D. Ajiga, P. A. Okeleke, S. O. Folorunsho,
and C. Ezeigweneme, “The role of
software automation in improving
industrial operations and efficiency,” Int.
J. Eng. Res. Updat., vol. 7, no. 1, pp. 22–35,
2024, doi:
https://doi.org/10.53430/ijeru.2024.7.1
.0031.

[25] B. Choi and E. Medina, “Cisco Router and
Switch Configuration with Ansible,” in
Introduction to Ansible Network
Automation, Berkeley, CA: Apress, 2023,
pp. 595–660, doi:
https://doi.org/10.1007/978-1-4842-
9624-0_12.

[26] M. El Rajab, L. Yang, and A. Shami, “Zero-
touch networks: Towards next-
generation network automation,”
Comput. Netw., vol. 243, p. 110294, 2024,
doi:
https://doi.org/10.1016/j.comnet.2024.
110294.

[27] G. Ramesh, J. Logeshwaran, and A. P.
Kumar, “The Smart Network
Management Automation Algorithm for
Administration of Reliable 5G
Communication Networks,” Wirel.
Commun. Mob. Comput., vol. 2023, pp. 1–
13, Apr. 2023, doi:
https://doi.org/10.1155/2023/762680
3.

[28] S. Aleem and S. Ahmed, “Unlocking
Network Security and QoS: The Fusion of
SDN, IoT, and Machine Learning: A
Comprehensive Analysis,” Int J Sci Res
Netw. Secur. Commun. Vol, vol. 11, p. 6,
2023.

[29] M. Kulkarni, B. Goswami, J. Paulose, and
L. Malakalapalli, “Unlocking the Power of
Software-Defined Networking (SDN) in
Revolutionizing Network Management,”
in Advanced Cyber Security Techniques
for Data, Blockchain, IoT, and Network
Protection, IGI Global Scientific
Publishing, pp- 309-336, 2025, doi:

https://doi.org/10.1145/3421764
https://doi.org/10.1007/978-1-4842-9624-0_1
https://doi.org/10.1007/978-1-4842-9624-0_1
https://doi.org/10.1109/ACCESS.2021.3099092
https://doi.org/10.1109/ACCESS.2021.3099092
https://doi.org/10.1109/ACCESS.2022.3149795
https://doi.org/10.1109/ACCESS.2022.3149795
https://doi.org/10.1016/j.comnet.2022.109123
https://doi.org/10.1016/j.comnet.2022.109123
https://doi.org/10.1109/TPWRD.2021.3128993
https://doi.org/10.1109/TPWRD.2021.3128993
https://doi.org/10.1145/3379444
http://dx.doi.org/10.22937/IJCSNS.2022.22.11.101
https://doi.org/10.53430/ijeru.2024.7.1.0031
https://doi.org/10.53430/ijeru.2024.7.1.0031
https://doi.org/10.1007/978-1-4842-9624-0_12
https://doi.org/10.1007/978-1-4842-9624-0_12
https://doi.org/10.1016/j.comnet.2024.110294
https://doi.org/10.1016/j.comnet.2024.110294
https://doi.org/10.1155/2023/7626803
https://doi.org/10.1155/2023/7626803

Int. J. Electron. Commun. Syst, 4 (2) (2024) 87-97 97

https://doi.org/10.4018/979-8-3693-
9225-6.ch012.

[30] P. M. Gupta, “Software-Defined
Networking (SDN): Revolutionizing
Network Infrastructure for the Future,”
in Software-Defined Network
Frameworks, CRC Press, pp 89-108,
2024.

[31] T. Muhammad and M. Munir, “Network
Automation,” Eur. J. Technol., vol. 7, no. 2,
pp. 23–42, 2023, doi:
https://doi.org/10.47672/ejt.1547.

https://doi.org/10.4018/979-8-3693-9225-6.ch012
https://doi.org/10.4018/979-8-3693-9225-6.ch012
https://doi.org/10.47672/ejt.1547

