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Automation of software-defined networking (SDN) in Proxmox VE 8.1 enhances 
virtual network management by improving efficiency, scalability, and the speed of 
network configuration changes. This study aims to automate SDN configuration 
management in Proxmox VE using Ansible and evaluate its performance. The 
research follows the Network Development Life Cycle (NDLC) method, consisting of 
six stages: Analysis, Design, Simulation Prototyping, Implementation, Monitoring, 
and Management. Automation was implemented successfully using an Ansible 
playbook to manage creating and deleting zones, VNets, subnets, IP gateways, and 
DHCP ranges. The automated process was tested over three trials, with creation 
times of 23, 20, and 21 seconds and deletion times of 20, 19, and 20 seconds, 
respectively. By contrast, the manual process required 6 minutes 6 seconds for 
creation and 2 minutes 37 seconds for deletion. These results demonstrate that 
automation using Ansible significantly reduces configuration time, offering a more 
efficient and reliable approach than manual methods. The findings highlight the 
potential of Ansible to streamline SDN management in Proxmox VE, saving time, 
energy, and resources while ensuring scalability and consistency in virtualized 
network environments. 
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INTRODUCTION 
The rapid development of information 

technology continues to enhance various 
aspects of human life. Among these 
advancements, virtualization technology has 
emerged as a transformative innovation, 
enabling a single physical machine to 
simultaneously act as a shared resource for 
multiple services [1], [2]. Proxmox Virtual 
Environment (VE), an open-source 
virtualization platform based on Linux Debian, 
is widely utilized for managing hardware and 
operating system virtualizations. It facilitates 
container management, virtual machines, 
storage, virtual networks, and high-availability 
clusters through a web interface and command 
line [3]. However, manual management of 
Proxmox configurations often leads to human 

errors, such as incorrect data or code input, 
potentially causing system errors or downtime 
[4]. 

Software Defined Networking (SDN) is a 
significant advancement in network 
virtualization, particularly in Proxmox VE. SDN 
in Proxmox VE offers enhanced flexibility by 
separating control and data planes, enabling 
comprehensive control over virtual network 
guests through software-defined 
configurations [5]. Among the automation 
tools available, Ansible has become an open-
source platform for provisioning servers, 
managing configurations, and deploying 
applications [6]. 

Previous studies have addressed various 
aspects of network automation. For example, 
Ikhsan [7] focused on implementing Network 
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Controllers for centralized configuration 
management of AAA protocols, DNS, and 
monitoring infrastructure. Similarly, Marzuki 
et al. [8] demonstrated the automation of 
virtual network configurations using VSwitch 
and Ansible. Chandrawaty and Hariyadi [9] 
investigated using Ansible Playbooks to 
automate VLAN configurations on Cisco 
devices. However, these studies focus on Cisco-
based network controllers, quality of service 
(QoS) applications, and VLAN or VXLAN 
automation. 

Despite these advancements, significant 
gaps remain in managing Proxmox VE SDN 
configurations. Existing studies fail to address 
comprehensive control over virtual network 
guests, the separation of features and 
limitations for virtual networks, and the 
integration of monitoring capabilities for 
VNets and connected guests. Moreover, 
managing configurations for multiple zones, 
Vnets, and subnets remains time-consuming 
and resource-intensive [10], [11].  

This study proposes automating SDN 
network configuration management on 
Proxmox VE using Ansible as an automation 
tool to address these limitations. The proposed 
approach minimizes configuration errors and 
accelerates processes by automating tasks 
such as creating and deleting Simple Zones, 
Vnets, Subnets, and DHCP ranges. Unlike 
previous research, this study provides a 
detailed design and implementation of 
automated Proxmox VE SDN configuration 
management, including monitoring 
capabilities through the IP Address 
Management (IPAM) menu. The novelty of this 
research lies in its integration of 
comprehensive automation and monitoring 
functionalities to streamline network 
management while reducing human error. 
This innovation is expected to significantly 
improve the efficiency and reliability of SDN 
management in Proxmox VE environments. 
 

METHOD 
This research employs the Network 

Development Life Cycle (NDLC) method, a 
structured framework widely used in network-
related projects to streamline system 
development and ensure reliability. The NDLC 
method builds upon established processes, 
such as business strategy planning, application 
development lifecycle, and data distribution 

analysis [12], [13]. It comprises six stages: 
analysis, design, simulation prototyping, 
implementation, monitoring, and management. 
However, this study focuses on three primary 
stages: Analysis, Design, Simulation, and 
Prototyping, described in detail below. 

 
Analysis Stage 

The authors identified inefficiencies and 
challenges associated with manually 
configuring Proxmox-based SDN environments 
in the analysis stage. Common issues include 
high susceptibility to human error—such as 
misconfigurations—that can disrupt system 
functionality and require significant 
rectification time. Data on frequently 
encountered problems in manual SDN 
configuration were collected and analyzed 
[14], [15]. This analysis formed the basis for 
designing an automation system using Ansible, 
addressing key requirements such as 
minimizing configuration errors and 
enhancing operational efficiency. By focusing 
on these issues, this stage provided a strong 
foundation for tailoring automation solutions 
specifically for Proxmox VE environments. 

Design Stage 
The design stage centered on developing a 

simulation for automating Proxmox-based 
SDN configurations using Ansible. This process 
involved designing IP address configurations 
to establish a structured and efficient virtual 
network environment. The automation 
workflow was developed using Ansible 
Playbooks to streamline tasks such as creating 
and deleting zones, VNets, subnets, and DHCP 
ranges [6], [16]. These automated 
configurations were designed to ensure 
scalability and reduce manual interventions, 
improving reliability. 

 
Network Design 

The network topology utilized in this study 
is designed to optimize the automation 
process for SDN configurations [17], [18], [19]. 
The setup consists of two primary 
components: an Ansible server and a Proxmox 
VE server. The Ansible server is connected to 
the internet via port ens33, with its IP address 
dynamically allocated through NAT and DHCP, 
resulting in a configuration of 192.168.169.1. 
Meanwhile, the Proxmox VE server establishes 
a static connection with the Ansible server 
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through port vmbr0, using the static IP 
address 192.168.169.10. This direct and 
structured connection between the two 
servers facilitates seamless communication, 
ensuring efficient execution of automated SDN 

configuration tasks. The network topology is 
depicted in Figure 1, showcasing the 
streamlined design that underpins the 
automation framework.

 

 

Figure 1. The Network Design 

 
Test Network Design 

The test network design, illustrated in 
Figure 2, was developed using virtualization 
tools to establish a controlled and flexible 
testing environment [20], [21], [22]. A 
Windows 11 host, connected directly to the 
internet, served as the base system for the 
setup. VMware Workstation version 16 Pro 
was utilized on this host to create two virtual 
machines. The first virtual machine functioned 
as an Ansible server, responsible for executing 

automation scripts. The second virtual 
machine operated as a Proxmox VE server, 
managing Software Defined Networking (SDN) 
configurations, including creating and deleting 
zones, VNets, subnets, and DHCP ranges. As 
emphasized in related studies, this virtualized 
setup provided a robust platform for testing 
the automation processes, ensuring 
reproducibility and adaptability to various 
network scenarios.
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Figure 2. Test Network Design 

 
IP Addressing Design 

The IP addressing for this study uses Class 
C networks with five address blocks: 
192.168.174.0/24, 192.168.169.0/24, 
192.168.100.0/24, 192.168.101.0/24, and 

192.168.102.0/24. Each network is configured 
to support specific SDN zones and DHCP 
ranges, as shown in Table 1. 
 

 
Table 1. IP Addressing Design 

Device int Description IP Address Gateway 

Server ansible ens 33 DHCP from NAT cloud 192.168.174.128/24 192.168.174.1 

Ens 34 Host-only 192.168.169.1  

Server Proxmox Vmbr0 Host-only 192.168.169.10  
 Zone sdn01  

bridge 

Zones created on a proxmox-based SDN 192.168.100.0/24  

Zone sdn02  192.168.101.0/24 

Zone sdn03 192.168.102.0/24 

100 srv.ubg.local  Which CT in zone sdn01  

DHCP 

 

192.168.100.1 

101 srv.ubg.local 

102 srv.ubg.local  CT that is on zone sdn02  

DHCP 

 

192.168.101.1 

103 srv.ubg.local 

104 srv.ubg.local  CT that is on zone sdn03  

DHCP 

 

192.168.102.1 

105 srv.ubg.local 

 
Automation System Design 

The automation system design focuses on 
developing an efficient workflow using Ansible 
to manage SDN features in Proxmox VE. The 
process begins with a network administrator 
creating and deploying Ansible Playbooks and 
YAML scripts to automate various SDN 
configurations. These scripts are designed to 
handle creating and deleting zones, VNets, 
subnets, DHCP ranges, and containers, 
ensuring that all tasks are executed 

consistently and without manual intervention. 
Once the automation scripts are deployed, the 
system undergoes rigorous testing to verify 
that all configurations function seamlessly, 
enabling reliable and streamlined network 
management. The complete automation 
workflow is illustrated in Figure 3, which 
outlines the sequence of tasks and their 
integration within the Proxmox VE 
environment.
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Figure 3. Automation System Flow Design 

 
Prototyping Simulation Stage 

In the prototyping simulation stage, a 
system simulation was developed to validate 
the automation process. The authors 
configured virtualization devices using 
Proxmox VE and Ansible servers, ensuring 
accurate system behavior before deployment. 
The setup included testing connectivity 
between containers (CTs) in the same and 
different zones and verifying IP address 
allocation in the IPAM menu. 
 
Installation and Configuration Stage 

The installation and configuration stage 
involved setting up all necessary components 
to enable automation and management of the 
SDN environment. First, the Proxmox VE 
server was installed and configured to handle 
the creation of zones, VNets, subnets, and 
DHCP ranges, serving as the primary 
virtualization platform. Next, the Ansible 
server was established with a collection of 
Playbooks and YAML scripts specifically 
designed to automate SDN management tasks, 
including creating and deleting network 
configurations. Finally, a Windows 11 client 
was configured to establish connections with 
the Proxmox VE and Ansible servers, enabling 
simulation and testing of the automated 
processes. This comprehensive setup ensured 
a functional and efficient environment for 

implementing and verifying the automation 
workflow. 
Test Scenario 

The test scenarios conducted in this study 
aimed to evaluate the efficiency and reliability 
of SDN configuration management in Proxmox 
VE. First, manual configuration testing was 
performed to measure the time required to 
create and delete three zones and VNets 
manually. This process provided a baseline for 
comparing the efficiency of manual 
configurations. Next, automated configuration 
testing was conducted using Ansible to 
automate the creation and deletion of zones 
and VNets. This step highlighted the time-
saving advantages of automation compared to 
manual efforts. Finally, connectivity and IP 
allocation testing was carried out to verify the 
connectivity of containers (CTs) both within 
the same zone and across different zones. The 
tests also included validating internet access 
and ensuring accurate IP address allocation via 
the IPAM menu, reinforcing the reliability of 
automated configurations. These scenarios 
provided comprehensive insights into the 
benefits of automation in managing SDN 
configurations effectively. 
 

RESULTS AND DISCUSSION 
This section provides a detailed analysis 

of the results obtained from the manual and 
automated configuration tests, focusing on 
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time efficiency, configuration success rates, 
and connectivity validation. The findings are 
critically discussed to highlight the 
implications and relevance of automation in 
Software-Defined Network (SDN) 
management. 

 

1. Manual Configuration Analysis 
Table 2 summarizes the results of the 

manual configuration process in Proxmox-
based SDN. This includes creating and deleting 
zones, VNets, subnets, gateways, and DHCP 
ranges for each zone. 
 

 
Table 2. Manual Creation and Deletion Analysis Table 

 
Zone 

Vnet  
Success 

 
Time subnets gateway DHCPranges 

Creation 
Sdn01      

6 minutes 6 seconds Sdn02     

Sdn03     

Deletion 

Sdn01     2 minutes 37 seconds 
Sdn02     

Sdn03     

 
The results indicate that the manual 

configuration process, although successful, is 
time-consuming. On average, manually 
creating configurations took 6 minutes and 6 
seconds, while deletion required 2 and 37 
seconds. These findings are consistent with 
Madamidola [23], who identified manual 
processes as prone to inefficiencies and human 
error, particularly in larger-scale networks. 

The prolonged duration of manual 
configuration is a significant limitation, 
especially in dynamic environments where 
frequent updates and reconfigurations are 

necessary. As network complexity increases, 
manual processes can introduce operational 
delays and inconsistencies. This reinforces 
Ajiga et al. [24] 's argument, which emphasizes 
the need for automation to mitigate these 
challenges. 
 
2. Automated Configuration Analysis 

The automation results using Ansible for 
creating and deleting configurations are 
presented in Tables 3 and 4. The data 
highlights the efficiency of automation 
compared to manual processes

 
 

Table 3. Analysis of Automated Creation Results 
Creation 

zone vnets Success Time 

subnets gateway DHCP ranges 

First Test 

Sdn01      
23 seconds Sdn02     

Sdn03     

Second Test 

Sdn01      
20 seconds Sdn02     

Sdn03     

Third Test 

Sdn01      
21 seconds Sdn02     

Sdn03     

 
Table 3 provides information on the 

configuration management process for 
creating zones, vnets, subnets, IP gateways, 

and DHCP ranges on an SDN based on 
Proxmox VE. During the automation process, 
the creation time was measured across three 
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tests. The automation for creating zones, vnets, 
subnets, IP gateways, and DHCP ranges was 
successful, with the first test taking 23 

seconds, the second 20 seconds, and the third 
21 seconds. The analysis of the automated 
deletion process is shown in Table 4.

 
Table 4. Analysis of Automated Deletion Results 

Deletion 

zone vnets Success Time 

subnets gateway DHCP ranges 

First Test 

Sdn01      
20 seconds Sdn02     

Sdn03     

Second Test 

Sdn01      
19 seconds Sdn02     

Sdn03     

Third Test 

Sdn01      
20 seconds Sdn02     

Sdn03     

 
Table 4 provides information on the 

configuration management process for 
deleting zones, vnets, subnets, IP gateways, 
and DHCP ranges on an SDN based on 
Proxmox VE. During the automation process, 
the deletion time was measured over three 
tests. The automated deletion of zones, vnets, 
subnets, IP gateways, and DHCP ranges was 
successful, with the first test taking 20 
seconds, the second 19 seconds, and the third 
20 seconds. At this stage, an analysis is 
conducted on creating CTs for each zone with 
two CTs. Connectivity between CTs within the 
same zone and between CTs in different zones 
is checked. Additionally, an analysis is 
performed to ensure that the CTs have internet 
access and the correct IP address allocation in 
the IPAM menu. These findings corroborate 

prior research by Chandrawaty and Hariyadi 
[25], who demonstrated similar time savings 
using Ansible for VLAN configuration 
management. 

Moreover, the consistency observed in 
automation results eliminates the risks 
associated with human error. As El Rajab et al. 
[26] and Ramesh et al. [27] noted, automation 
ensures that configurations are applied 
uniformly across all network components, 
improving overall reliability and scalability. 
 
3. Connectivity and IP Allocation Validation 

Table 5 illustrates the results of 
connectivity tests between containers (CTs) 
within the same and different zones, along 
with IP allocation and internet access 
validation.

 
Table 5. CT Connectivity Analysis Results in Zone 

CT 

ID 

ZONE Internet 

Access 

CT Connectivity on 

Different Zones 

CT Connectivity to 

Different Zones 

IPAM IP 

Allocation 

100 Sdn01     

101     

102 Sdn02     

103     

104 Sdn03     

105     

 
Table 5 presents information related to 

the results of CT connectivity checks that have 
been made where tests are carried out related 
to the success of each CT in the zone that has 

been created by conducting connectivity tests 
between CTs in the same zone, testing 
connectivity between CTs in different zones 
and testing each CT to access the internet so 
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that CT gets internet services and finally 
conducting trials related to IP allocation at 
IPAM so that it can be seen in the table that it 
was successfully carried out related to 
checking connectivity between CTs in the same 
zone where in this trial pinging was carried 
out between CT IDs 100 and 101 in zone sdn01 
and carried out to all CTs in each zone, after 
that, a connectivity check between CTs in 
different zones was carried out on CT IDs 102 
and 103 which pinged the CT IP Address in 
each zone and was successfully connected, CT 
trials got internet access by pinging 
google.com on each CT and successfully get 
internet access. Finally, the IPAM section will 
be tested to see where each CT ID is 
successfully in the IPAM section in each zone. 

The connectivity and IP allocation tests 
demonstrate the effectiveness of Ansible 
automation in maintaining network integrity. 
All CTs successfully communicated within and 
across zones and accessed the internet without 
issues. Furthermore, IP allocation through the 
IPAM module was accurate and consistent. 

These results align with findings from 
Aleem et al. [28], Kulkarni et al. [29], and 
Gupta [30], who highlighted the importance of 
automated IP management systems in 
maintaining seamless connectivity in SDN 
environments. The results also validate the 
robustness of Ansible as a tool for managing 
complex network configurations. 

The manual and automated configuration 
results demonstrate the advantages of 
automation in SDN management. Automation 
not only reduces configuration times but also 
minimizes errors and enhances reliability. As 
Muhammad and Munir [31] highlight, 
automation is essential for achieving 
scalability and consistency in dynamic 
network environments. 

Future research could explore the 
integration of advanced monitoring and 
analytics tools into the automation process. 
Additionally, incorporating Quality of Service 
(QoS) features and real-time performance 
metrics could further enhance automation's 
utility in SDN management. 
 

LIMITATIONS 
Complexity of SDN Infrastructure, 

Possible Limitations in SDN, Proxmox as a 
Limited Hypervisor, Dependency on Tool 
Versions, and Security and Management. 

CONCLUSION 
The design and implementation of SDN 

virtualization configuration management 

automation based on Proxmox VE using 

Ansible as an automation tool was 

successfully applied through an Ansible 

playbook. The playbook handled the 

configuration for creating and deleting zones, 

vnets, subnets, IP gateways, and DHCP 

ranges. The process involved creating and 

deleting three zones, three vnets, and subnets, 

along with their corresponding gateways and 

DHCP ranges for each vnet. 

Based on three automated tests using 

Ansible, the automation process took 23 

seconds for the first test, 20 seconds for the 

second, and 21 seconds for the third. 

Similarly, deletion tests were conducted three 

times, with the first test taking 20 seconds, 

the second 19 seconds, and the third 20 

seconds. Additionally, manual testing for the 

creation process took 6 minutes and 6 

seconds, while manual deletion took 2 

minutes and 37 seconds. Therefore, 

automation using Ansible for SDN 

configuration management based on 

Proxmox VE is faster than manual 

configuration, making the automation process 

more efficient in terms of time, effort, and 

resources. 
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