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This study presents the phase control and polarization of electromagnetic waves 
emitted in quasiperiodic crystals such as Fibonacci, T-M, DP, and RS and the 
periodic structure of a photonic crystal consisting of fullerene and tellurium 
nanoscales in near-infrared -visible wavelengths. By examining the arrangement 
of layers in quasi-periodic crystals, which, like periodic structures, possess band 
gaps that impede the transmission of electromagnetic waves, we can determine 
the specific region where the photonic band gap (PBG) is formed for both 
transverse electric (TE) and transverse magnetic (TM) polarization waves. 
Subsequently, after examining the transmitted light that passed through our 
structure, we have identified the band gap of different structures. Also, we have 
plotted the phase changes in the center and edges of the band gap. After taking into 
account the magnitude of the electric field and the phase difference, it becomes 
evident that when elliptically polarized light is transmitted, a tilt angle is seen 
corresponding to the angle of polarization. The paper used the renowned transfer 
matrix approach. According to our research, the suggested design enables the 
creation of very condensed phase controllers, such as phase retarders and 
polarizers. 
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INTRODUCTION 
The year 1987 saw the discovery of photonic 

crystals, sometimes known as PCs [1, 2]. 

Generally speaking, photonic band gaps (PBGs) 

are present in photonic crystals (PCs), which are 

periodic structures of electromagnetic media. The 
frequency ranges that these PBGs correspond to 

are those where light is unable to pass through the 

structure. The wavelength of the photons 
determines whether or not they are able to go 

through this structure. The most basic form of all 

the other structure types is the one-dimensional 

periodic structure. It consists of a series of layers 

with varying refractive indices, from low to high. 

The thicknesses of the layers are in accordance 
with the Bragg condition[3–5]. The whole PBG is 

shown by these wavelength bands, which are not 

permitted[6]. 

There has been a significant amount of 
attention in recent years towards the study of one-

dimensional spatially periodic, quasi-periodic, and 

random photonic bandgap (PBG) structures, both 
in terms of their physics and practical 

applications[7–9]. The transition from the perfect 

periodic structure may be described using quasi-
periodic systems, which can be considered to be 
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acceptable models for this purpose[10]. One of the 
key tools in the fields of optoelectronics and 

contemporary optics is the photonic quasicrystal 

(PQC)[11]. Important examples of photonic 

quasicrystals are Thue Morse (T-M)[12,13], 
Fibonacci[14,15], Double Periodic (DP)[16,17], 

and Rudin Shapiro (RS)[18,19].  
In 1985, Buckminster Fullerene (C60) was 

discovered, which not only brought about a 

breakthrough in the world of chemistry but also 

marked the beginning of the era of carbon 

nanotechnology[20]. First and foremost, Kroto 
conducted research on a particular organic 

molecule in space using a telescope that included 

precisely sixty carbon atoms that were located in 
close proximity to a number of red giant stars[21]. 

A Buckminster Fullerene, also known as C60, is a 

carbon-based structure consisting of hexagonal 
and pentagonal rings arranged in an enclosed 

spherical shape. The suffix "60" indicates the 

amount of carbon atoms present in the structure. 

Additionally, each carbon atom in the Buckminster 
Fullerene is sp2 hybridized. The structure includes 

around 20 hexagonal rings and 12 pentagonal 

rings[22]. In the realm of research and 
development, over the last decade, the chemical 

and physical properties of fullerenes have been a 

topic of interest and have received a lot of 
attention. This pattern is likely to persist for a 

lengthy period in the future since it is extremely 

likely that it will continue[23–25]. 

Fullerenes (C60) have garnered a lot of 
attention from the scientific community in recent 

times due to their new optical and electrical 

characteristics as well as their prospective uses. 
For example, fullerenes that have been doped with 

alkali metals can become superconductors, while 

thin films that have been doped can operate as 

conductors[23,26]. C60 fullerenes are quite simple 
to modify structurally, which is one of the reasons 

why the technical treatment is rather 

straightforward. Through the modification of the 
geometry and the degree of conjugation of the 

carbon superstructure, it is also possible to 

reproduce the electrical and optical characteristics 
of C60 fullerenes films. This may be done in order 

to get the desired results. It is possible to make 

use of this ability of C60 fullerenes in order to 

fabricate photonic crystal structures by 

making use of fullerenes filmsC60 thin films 

of exceptional quality have been successfully 

grown on a range of semiconductor and metal 

substrates, such as Te [27], Ge [28], GaAs 

[29], Ag [30] and so on. The near-infrared 

region and the wavelength range of 530 nm are 

the regions in which C60 thin films exhibit nearly 
little absorption [31]. It is also possible to 

disregard the dielectric constant in this region 

because it has very little impact on the frequency. 

In light of the fact that it is a metallic counterpart, 
in addition to having a dielectric constant that is 

practically frequency independent and a simpler 

fabrication procedure, it is advantageous in the 
design of the PC structure [32, 33]. 

The transfer matrix technique (TMM) is 

utilized in this study to calculate the transmittance 

and reflectance spectra, as well as to forecast the 

resonant frequencies and PBG properties. The 

transfer matrix method is known for its 

computational efficiency, accurate solutions 

in multilayer mediums, and adaptability across 

wave types and physical challenges. It thrives 

in multilayer materials and complicated 

refractive indices where other approaches may 

be less efficient or precise. The photonic 

structure is made comparing the arranged Thue 

Morse (TM), Fibonacci, double period (DP), 

Rudin Shperio (RS) quasi-periodic sequence with 
periodic structure in order to design an efficient 

Distributed Bragg reflector (DBR). We estimate an 

appropriate comparison in periodic and quasi-
periodic structures with extremely high 

reflectivity. To produce an effective bandgap for 

both polarizations, we anticipate the degree of gap 

deformation as well as the wavelength and 
incidence angle parameters. We investigate the 

edge adjustment bar by altering the structure 

parameters. In addition, we introduce phase 
transitions at the boundaries. We show that the 

light that has linear polarization will change to 

elliptical polarization, and we show the tilt angle 

changes. The comparison of the optical and 
phase characteristics of four quasi-periodic 
stacking techniques and the conventional 
periodic structure, which may be used for 
devices that are needed, is an innovative aspect 
of the paper. 

 
METHOD 

Analysis of Periodic and Quasiperiodic 
Structures and Computational Techniques 

All of the quasiperiodic structures taken 
into consideration in this study belong to the 
category that is often referred to as 
substitutional sequences. A number of subfields 
within the fields of computer science, 
mathematics, and cryptography have 
researched the sequences that are produced by 
replacements. Those applications in physics 
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that have been developed more recently have 
been described in the commencement. The 
characteristics of the sequences are 
determined by the characteristics of their 
Fourier spectrum, which may either be densely 
concentrated at particular points (seen in 
Fibonacci sequences) or display a continuous 
distribution with singularities (observed in T-
M, DP, and RS sequences). Following in the 
footsteps of the articles that have previously 
used this methodology[34], we have also 
utilized it for the structure that is now being 
discussed. The nature of their Fourier spectrum 
determines the characteristics of the 
sequences. 
 

Fibonacci 
One of the most important factors that 

determines the presentation of a one-
dimensional (1D) photonic crystal (PC) is its 
structure[35]. As non-Euclidean geometrical 
formations, Fibonacci fractal photonic crystal 
(FFPC) structures exhibit remarkable optical 
properties. A Fibonacci sequence transmission 
spectrum has forbidden frequency regions 
known as 'band gaps,' which are comparable to 
the band gaps shown in photonic crystals. Two 
isotropic dielectric materials, denoted by L and 
H, with thicknesses of 𝑑𝐿and 𝑑𝐻, respectively, 
and permittivity values of 𝐿and 𝐻 . We assume 
that the layers have a permeability of 𝜇𝐴𝜇𝐻 and 
that they are nonmagnetic. A recurrent relation 
determines the structure in each dielectric cell 
that follows the Fibonacci sequence, {𝑆𝑆=Sn-1-
Sn-2}. The structure in every dielectric cell that 
follows the sequence determined by Fibonacci, 
{𝑆𝑆=Sn-1-Sn-2}, by a recurrent relation, where 
N is the Fibonacci unit cell's generation 
number, includes the following sequences. 

 
𝑆2 =LH; 𝑆3 =LHL; 𝑆4  =LHHLH; 

𝑆5=LHLLHLHL; etc 

The Fibonacci sequence of binary 
quasicrystal structure is one of the many 
quasiperiodic structures that has been the 
focus of significant research in recent 
decades. Since the discovery of the 
quasicrystal line phase in 1984, the 
electrical and optical characteristics of the 
Fibonacci multilayer structure have been 
extensively researched. This structure is a 
well-known example of a one-dimensional 
quasiperiodic structure. Fibonacci 

multilayer structures have been explored. A 
wave across a Fibonacci sequence structure 
has also been investigated in the last 
century; the Fibonacci sequence is 
characterized by resonant states that are 
located close to the band edge of a photonic 
structure[36]. 

Thue-Morse (T-M) 

As a consequence of Thue-morse sequence 
research of aperiodic chains, which he began in 
1906, the T-M series was first found. His 
findings have been rediscovered several times 
since then. Still, Morse's addition to the 
sequence in 1921, from the perspective of 
topological dynamics, is considered to be the 
most significant contribution to the 
sequence[37]. While there are other methods 
to define the T-M sequence, it is 
straightforward to demonstrate their 
equivalence. An alternative method to 
construct this series is by using the inflation 
rules L → LH and H → HL. 

𝑆1→ L; 𝑆2→ LH; 𝑆3→ LHHL; 𝑆4  → LHHLHLLH;  
etc.    (1)     

In this quasiperiodic system, the number 
of building pieces increases exponentially with 
n, specifically proportional to the value of 2n. 
Meanwhile, the ratio of the number of building 
blocks L to the number of building blocks H 
does not change and continues to be equal to 
one. 

Double period (DP) 

In the realm of aperiodic chains, the DP 
sequence is among the most recent 
examples[38]. Its inception may be traced back 
to the examination of system dynamics and the 
use of lasers in nonlinear optical fibers. The 
recursion relation has some resemblance to the 
T-M sequence scenario: the nth stage is 
determined by S0 → L and S1 → H. Additionally, 
it remains unchanged when subjected to the 
transformations L → LH and H → LL. The first 
cohorts include 

 S0 = L; S1 = LH; S2 = LHLL; S3 = LHLLLHLH;    etc.       
(2)  

The number of building pieces for the DP 
sequence grows proportionally to nth, 
following a pattern similar to the T-M 
sequence, namely doubling with each 
increment of n. 
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Rudin-Shapiro (RS) 

It is an infinite automated sequence in 
mathematics that is referred to as the Rudin 
Shapiro sequence, which is also known as 
the Rudin Shapiro sequence. This series 
was named after Marcel, Walter Rudin, and 
Harold S. Shapiro, whose features were 
explored separately. In contrast to other 
sequences, such as the Fibonacci sequence, 
the Rudin-Shapiro sequence is peculiar in 
that it does not fulfill the requirements for 
a number of theorems that are applicable to 
a large number of quasiregular sequences. 
As a result, it displays distinct variances in 
the spectrum features. Additionally, it has a 
growth law for the number of component 
materials, which rises at a rate that is faster 
than that of other sequences, such as the 
Fibonacci sequence[8]. It is possible to 
create the Rudin-Shapiro arrays by using 
the two-letter inflation rule in the following 
manner:  

LL →LLLH, LH →LLHL, HL→HHLH and 
HH→HHHL. The first generations are 

 𝑆0  = L; 𝑆1= LL; 𝑆2  =LLLH; 𝑆3  = LLLHLLHL;     
etc.       (3) 

Like the other described sequences, 
the number of building components for this 
sequence with n is double the value of n. 

Periodic 

       The formation of periodic photonic 
structures is governed by fundamental 
deterministic rules, which also account for 
the formation of periodic structures[39]. In 
addition, the generating rule is carried out 
several times in order to produce: 

 𝑆1 =LH;  𝑆2 =LHLH;  𝑆3 =LHLHLHLH; etc.     
(4) 

Transfer Matrix Method (TMM) 

Our inspiration came from the use of the 
transmission matrix method (TMM) to 
compute the transmission spectrum and the 
notion of reflection[40]. The present 
investigation studies a one-dimensional 
periodic crystal composed of Fullerene (C60) 
and tellurium (Te) materials, which are subject 
to fundamental deterministic rules governing 
the formation of periodic photonic structures. 
The periodic photonic crystal consisting of 

alternating layers of C60 and Te may be 
constructed predictably by stacking the two 
building blocks, L and H. The stacking pattern 
is represented by S(Δz) = (LH)N, where L and H 
correspond to the layers of C60 and Te, 
respectively, and N indicates the number of 
lattice periods. Please refer to Figure 1 for a 
visual representation. 

Furthermore, the generating rule is 
carried out several times in order to be 
generated. Figure 1 illustrates a one-
dimensional quasicrystal and periodic 
structure arranged in a geometric pattern. This 
structure, known as a periodic multilayer 
construction, has been embedded in the air. 
The structure consists of many layers, with 
layers L and H expected to have thicknesses of 
dL and dH, respectively. Therefore, the L and H 
layers are considered to be positive-index 
isotropic materials.  

 

Figure 1 Schematic sketch of the one-dimensional 

structure, which is embedded in air. The 
thicknesses of L (C60) and H (Te) are 

supposed to be dL and dH, respectively. 

The structural component in air consists of 
identical dielectric layers L and H, arranged in 
a periodic array along the z direction. In order 
to determine the transmission spectrum of a 
multilayer structure as a result of an 
electromagnetic wave impinging on the 
structure from the air at an angle of incidence 
θ, the transfer matrix approach is used. In the 
case of transverse magnetic (TM) and 
transverse electric (TE) waves, it is 
hypothesized that the electric field E and 
magnetic field H are orientated in the x 
direction and that the dielectric layers are 
located on the xy plane. Demonstrating the 
transfer matrix is possible. 
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𝑀𝑗(Δz, ω) = (
cos(k𝑧

𝑗Δz)
𝑖

𝛽𝑗
sin(k𝑧

𝑗Δz)

𝑖𝛽𝑗 sin(k𝑧
𝑗Δz) cos(k𝑧

𝑗Δz)
),   (5)                                                 

Links the tangential components of the 
electromagnetic fields at the initial point of 
the jth layer to those at the final point of the 

layer. Here, 𝑘𝑧
𝑗= (ω/c)√𝜖𝑗  √𝜇𝑗  

√1 − 𝑠𝑖𝑛2𝜃/𝜖𝑗𝜇𝑗  is the component of the 

wave vector along the z-axis in the jth layer, 

βj= (𝑘𝑧
𝑗/𝜔𝜖0𝜖𝑗 ) for transverse magnetic field 

(TM) wave, where 𝜖0 is the permittivity of 

the vacuum, and βj= (𝑘𝑧
𝑗
/𝜔𝜇0𝜇𝑗) for 

transverse electric field  (TE) wave where 
𝜇0 is the permeability of vacuum, c is the 
speed of light in vacuum. The 2 x 2 matrix is 
called the matrix of the film, represented 
generally by: 

 

M= (
𝑀11 𝑀12

𝑀21 𝑀22
),                               (6) 

The reflection and transmission coefficients 
may be expressed in terms of the transfer 
matrix elements to get a solution.  

r=
𝛾0𝑀11+𝛾0𝛾𝑠𝑀12−𝑀21−𝛾𝑠𝑀22

𝛾0𝑀11+𝛾0𝛾𝑠𝑀12−𝑀21+𝛾𝑠𝑀22
            (7) 

t= 
2𝛾0

𝛾0𝑀11+𝛾0𝛾𝑠𝑀12−𝑀21+𝛾𝑠𝑀22
                (8) 

where we have writing  

𝛾0=𝑛0 √𝜖0𝜇0 cos 𝜃0                                (9) 

 𝛾𝑠=𝑛𝑠 √𝜖0𝜇0 cos 𝜃𝑠                             (10) 

and the total reflectance and transmittance 
T=|𝑡|2                 (11) 
R=|𝑟|2                  (12) 
The treatment of TE waves is similar to that 
of TM waves [41]. 
 

An investigation was conducted on the 
polarization characteristics of a one-
dimensional quasicrystal dielectric 
multilayer structure (see Fig. 2). The tilt 
angle 𝑆 is the angle of rotation, measured 
counterclockwise, from the x-axis to the 
semi-major axis of the ellipse. Due to the 
symmetrical features of the ellipse, the tilt 
angle 𝑆 only has to be specified within the 
range of –π/2 to π/2. The tilt angle may be 
determined by establishing a rotated 
coordinate system in which the semi-major 
and semi-minor axes are aligned with the 
rotated coordinate axes. 

 

Figure 2. The polarization ellipse shows fields Ex 
and Ey and azimuthal angle α. The tip of 
the electric field E traces this elliptical 
path in the transverse plane as the field 
propagates down the z-axis. 

 
We assume that we use linearly polarized 

light on the structure, taking note of the 
variations in phases and amplitudes of the field 
that affect the polarization reflected in the 
ellipse. What is the angle between the x-axis 
and the form of the ellipse? Thus, the solution 
of tilt angle takes the form: 
 

tan 2𝑆 = 
𝟐𝑬𝟎𝒙 𝑬𝟎𝒚 𝐜𝐨𝐬 𝜺

𝑬𝟎𝒙 𝟐−𝑬𝟎𝒚
𝟐                            (13) 

Where Δφ = φTE – φTM Notice that you can 
rewrite this equation strictly in terms of the 
amplitude ratio and the phase difference, Let 
the of E along the x-and y-axes be Ex and Ey, 
respectively[42]. 
  

RESULTS AND DISCUSSION 
Over the past several decades, research on 

photonic crystal (PhC) devices has always been 
a popular field of study[43–45]. As a result of 
the unique photonic band gap (PBG), 
electromagnetic waves that are in a certain 
frequency range, as well as controlling the 
phase of waves in different areas of the 
electromagnetic wave spectrum, were able to 
obtain different polarizers[46]. The numerical 
outcomes of different physical parameters for 
an electromagnetic wave moving through 
Fibonacci, Thue-Morse, Rudin Shapiro, Double 
Period, and periodic structures. The 1D 
photonic quasicrystal multilayer stacks are 
presumed to be situated inside an air medium. 
The components that make up the photonic 
quasicrystal are characterized as being linear, 
homogenous, and transparent. This study is 
being conducted with the intention of 
determining the ways in which the 
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accumulation of layers on the periodic 
structure and the quasi-periodic structure 
influences the establishment of the band gap 
and phase changes. The ultimate goal of this 
research is to discover a method by which the 
phase may be controlled.  

The bandgaps that are seen in the 
properties of the multilayer material are 
subjected to extensive analysis for a variety of 
crystal parameters at a variety of generation 
numbers of quasi-periodic sequences and 
periodic structures. These materials are set to 
be the Fullerene C60 and the Tellurium (Te), 
with refractive indices 𝑛𝐶60

= 2.1 and 𝑛𝑇𝑒  = 4.8, 

respectively. The thickness of the bilayers (𝑑𝐿 = 
60 nm and 𝑑𝐻 = 40 nm) and the arrangement of 
the number of different layers in C60 and Te. We 
have assumed that the number of layers for the 
structure that we are considering is 32 layers; 
however, only the Fibonacci 34 layers are taken 
into consideration. This second figure shows 
the transmission bands band structure in 
perpendicular directions =0o for TE waves, as 
well as the numerical analysis of the proposed 
computer settings. The transmission matrix 
method is used to model the transmission 
through this thin multilayer film. It can be seen 
from Fig. 3 that the center wavelength of the 
band structure for periodic 650nm, Fibonacci 
825nm, Thue-Morse 980nm, Double Period 
580nm and Rudin Shapiro 810nm. In this 
article, the letters (a) are related to the 
Fibonacci structure, (b) Thue-Morse's, (c) 
Double Period, (d) Rudin Shapiro, and (e) 
Periodic sequence, respectively.  

 

 

 

 

 

Figure 3. Band structure of the TE mode in one-
dimensional fullerene-Tellurium 
nanocomposite structure at different central 
wavelengths: (a) periodic (b)Fibonacci (c) 
Thue-mors (d) Double period (e)Rudin shape. 

In Figure 3, we have selected the largest 
band gap for both TE and Figure 4 TM 
polarizations. The light transmission spectra 
versus the resonant frequency Ω0/2π, for 
different one-dimensional quasiperiodic 
sequences along with periodic structure are 
presented in Fig. 3 for a different incident angle 
(θ0 = 0◦ , θ0 = 30◦ , θ0 = 60◦ ). Here, the 
quasiperiodic sequences with generation 
number considered are as follows: 8th 
generation of Fibonacci sequence, 5th 
generation of Thue-morse, Double period and 
Rudin Shapiro sequence, 5th generation of 
Periodic sequence, respectively. The 
generation numbers are chosen to get the 
multilayer consisting of nearly the same 
number of slabs, i.e., 99 slabs, The point at 

a 

b 

c 

d 

e 
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which the band interval can be seen for the 
manufacturing number that corresponds to it. 
A band was seen in the near-infrared spectrum, 
which extends from 655 nm to 1040 nm, in 
relation to the Fibonacci sequence. Similarly, 
for the Thue-morse sequence 833nm to 
1169nm, Double period 507nm 664nm, Rudin 
Shapiro 755nm to 874nm and Periodic 
structure 512nm to 855nm, respectively.  

The fourth figure displays the 
transmittance spectra of a 1D multilayer 
sequence consisting of fullerene-germanium 
double periods. The spectra are shown for TM 
polarizations (Fibonacci, T-M, DP, RS, Periodic) 
in the visible to near-infrared wavelength 
range. The spectra are plotted for different 
angles of incidence: 00 (solid line), 300 (dashed 
line), and 600 (dotted line).  

According to these figures, the 
transmission spectra of C60-Te display a band 
gap for both TE and TM waves throughout the 
visible wavelength range of around 490nm to 
720nm. This band gap is present for both 
varieties of waves. Furthermore, the upper and 
lower borders of the gap move towards longer 
wavelengths as the angle of incidence rises for 
both TE and TM polarizations. This occurs 
regardless of whether the polarization is TE or 
TM.  

 

 

 

 

 

Figure 2. Transmission spectra of (a) Fibonacci, (b) T-M, 
(c) DP, (d) RS, (e) Periodic structure fullerene 
and Te for TE modes at a different angle of the 
incident as 00 (solid line), 300(dashed line), and 
600(dotted line).  

a 

b 

c 

d 

e 
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Figure 3. Transmission spectra of a) Fibonacci, (b) T-M, 
(c) DP, (d) RS, (e) Periodic structure fullerene 
and Te for TM modes at a different angle of the 
incident as 00 (solid line), 300(dashed line), and 
600(dotted line). 

 

 

 

 

b 

c 

d 

e 

a 

a 

c 

b 
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Figure 4 determined the phase difference between the TE and 
TM modes' phase shifts as a function of the 
incidence angle in the fullerene-Te multilayer 

structure's stop band for both the quasiperiodic and 
periodic structures 

 

Now, what kind of an effect does this have 
on the phase difference that exists between the 
bands at the higher, lower, and center 
wavelengths? Am I able to change it? As a 
means of responding to this query, we 
investigate the connection between the phase 
difference of two transmitted waves with TE 
and TM polarization at the gap's borders and 
the phase difference of the reflected waves in 
the gap's center. This gives us the opportunity 
to answer the issue. Our investigation also 
encompasses the examination of the variation 
in the phase difference (Δφ = φTE – φTM) as 
the wavelength changes. As the incidence angle 
fluctuates within the stop band for the center 
band wavelength, Figure 4 depicts the phase 
difference that occurs between the phase shift 
of TE polarization and TM polarization because 
of the variation in phase. In addition, the 
fullerene-Te arrangement has a center band 
wavelength Fibonacci (λ=823 nm), T-M( λ 
=1000 nm), DP( λ =585 nm), RS( λ =810 nm) 
and Periodic (λ =610 nm). 

Our calculations indicate that variations in 
wavelength and incidence angle result in 
slower changes within the stop band. 
Furthermore, when the incidence angles are 
near zero, the disparity in phase shifts between 
TE and TM waves is very negligible and 
remains unaffected by the incident angle. 
However, as the incident angle grows, this 
disparity starts to vary. 

The study aimed to ascertain the tilt angle 
of a periodic structure and one-dimensional 
Fullerene and Tellurium quasicrystal dielectric 
multilayer, as seen in Figures 6 and 7. We 
hypothesize that we use the wavelength of light 
at the lower and higher ends of the spectrum to 
analyze the band structure. This takes into 
account the variations in phases and 
amplitudes of the field, which affect the 
polarization of light as it is reflected and 
transmitted through an elliptical medium. 
What is the tilt angle between the x-axis and the 
formed ellipse? We have identified the two 
edges of the band gap and have chosen the first, 
last, and center wavelength bands with the 
widest range of passage. 
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Figure 5. The lower edge's tilt angle of transmission in 
relation to the entering light's wavelength 
Fibonacci (λ=655nm), Thue Morse(λ=833nm), 
Double Period (λ=507nm), Rudin Shapiro 
(λ=755nm), Periodic (λ=466nm). 

 

    The lower band edge wavelengths are as 
follows: Fibonacci (λ=655 nm), T-M (λ=833 
nm), DP (λ=507 nm), RS (λ=755 nm), and 
Periodic (λ=466 nm). The higher band edge 
wavelengths are as follows: Fibonacci (λ=1041 
nm), T-M (λ=1169 nm), DP (λ=664 nm), RS 
(λ=874 nm), and Periodic (λ=855 nm). 
Equation (2) may be used to get the tilt angle α 
based on the angle of incidence θ. Note that for 
all three low and higher band structures, light 
transmission has the highest value in those two 
points of our spectrum. Consequently, the 
following inequality restricts the tilt angle of 
the elliptical polarization:  −45° <𝑆< 45. In the 
cases of lower edge band structure Fibonacci, 
T. Morse, and Double Period, it is evident that 
the tilt angle, which is 45 degrees, does not vary 
when the incidence angle increases. 

On the other hand, in the case of Rodin Shapiro, 
the entrance angle will shift by 60 degrees. 
Throughout the period structure that occurs 
after the incidence angle of 18 degrees, the tilt 
angle goes through a series of quick variations 
that vary from 450 degrees to -450 degrees. The 
dependency of tilt angle on the angle of 
incidence is seen in Figure 7, which may be 
found attached here. With the rise in the 
descent angle, we have shown that the tilt angle 
has not altered solely in Rudin Shapiro; rather, 
it has stayed at 45 degrees throughout the 
process. Other structures, such as the Fibonacci 
and T-Morse structures, as well as the double 
period and periodic structures, have tilt angles 
that are very sensitive to the angle at which 
they are impacted. The center edge's tilt angle 
of reflection in relation to the entering light's 
wavelength can be seen in Figure 8. 
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Figure 6. The higher edge's tilt angle of transmission in 
relation to the entering light's wavelength Fibonacci 
(λ=1041nm), Thue-Morse (λ=1169nm), Double 
Period (λ = 664 nm), Rudin Shapiro (λ=874nm), 
Periodic (λ=855nm). 

 

 

 

 

 

 

Figure 7. The center edge's tilt angle of reflection in 
relation to the entering light's wavelength 

Fibonacci (λ=823nm), Thue-Morse (λ=986nm), 
Double Period (λ = 588 nm), Rudin Shapiro 
(λ=812nm), Periodic (λ=650nm). 

 

Figure 8 makes it abundantly evident that 
the band gap is a region through which 
electromagnetic waves are unable to travel, but 
instead, they are reflected. Within the context of 
this plot, we have selected a wavelength that is 
located in the middle of the band gap and has 
the greatest degree of reflection. In the figure, it 
is evident that the tilt angle has not changed 
with the rise in the incidence angle for the 
Fibonacci sequence and the periodic structure. 
On the other hand, as the angle of incidence 
grows to a certain degree, the slope angle of 
structures like the T Morse, Double Period, and 
Rudin Shapiro begins to 

d 

e 

a 

b 

c 

d 

e 



82  Int. J. Electron. Commun. Syst, 4 (2) (2024) 71-85 

alter in some regions. Meta surfaces are 
much sought after for their potential use in 
polarization control and tuning. In many optical 
applications, including ellipsometry, 
polarimetry, optical sensing, and polarization-
division multiplexing, polarization 
manipulation is essential. This manipulation 
enhances performance compared to traditional 
methods of material characterization and 
communication. 
 

LIMITATIONS 
Limitations occur in all types of 

research, and most are beyond the 
researcher's control (due to practical 
constraints such as budget and lack of 
research tools or access to the population of 
interest). 

 
CONCLUSION 

This study demonstrates the potential of 
one-dimensional photonic crystals with 
fullerene and tellurium nanolayers in achieving 
precise phase and polarization control of 
electromagnetic waves. By leveraging periodic 
and quasiperiodic structures, such as Fibonacci 
and Thue-Morse, the research highlights their 
efficacy in generating tunable photonic 
bandgaps across the visible to near-infrared 
spectrum. The findings emphasize the 
suitability of these structures as polarization 
filters and phase modulators, with applications 
in optical devices and sensors. The use of the 
transfer matrix method further underscores 
the robustness of the design in manipulating 
light polarization and achieving desired 
electromagnetic properties with high precision. 
These insights open pathways for advanced 
applications and continued exploration of 
photonic crystal technologies. 
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