

International Journal of Electronics and Communications Systems

Volume 3, Issue 2, 57 - 67.
ISSN: 2798-2610

http://ejournal.radenintan.ac.id/index.php/IJECS/index
DOI: 10.24042/ijecs.v3i2.19860

 Corresponding author:
Universitas Bumigora, Mataram, INDONESIA. khairan.marzuki@universitasbumigora.ac.id
© 2023 The Author(s). Open Access. This article is under the CC BY SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Analysis and Implementation of Comparison Between Podman and
Docker in Container Management

Husain

Fakultas Teknik, Universitas Bumigora, Mataram,
INDONESIA

Khairan Marzuki
Fakultas Teknik, Universitas Bumigora, Mataram,

INDONESIA

Christopher Michael lauw
Fakultas Teknik, Universitas Bumigora, Mataram,

INDONESIA

Lalu Zazuli Azhar Mardedi
Fakultas Teknik, Universitas Bumigora, Mataram,

INDONESIA

Article Info Abstract

Article history:

Received: October 12, 2023
Revised: November 14, 2023
Accepted: December 29, 2023

The increasing use of the internet makes the implementation process more
accessible, but the problem is difficult to manage network management, with the
emergence of container technologies such as Docker and Podman as efficient
application management solutions. This research compares Docker and Podman
regarding container management using the Network Development Life Cycle
(NDLC) methodology. This study evaluates three parameters: accessing the Fedora
project registry, handling images or ISOs, and user access in containers. The results
show that Podman performs better regarding registry access, is slightly faster with
images, and offers faster user creation. Overall, the study concludes that Podman
is superior, demonstrating compatibility with Docker, and proving its efficacy in
container management.

Keywords:

Computer Network;
Container;
Docker;
Podman

To cite this article: H. Husain, K. Marzuki, C. M. Lauw, and L. Z. A. Mardedi. “Analysis and Implementation of Comparison
Between Podman and Docker in Container Management, ” Int. J. Electron. Commun. Syst., vol. 3, no. 2, pp. 57-67, 2023.

INTRODUCTION
In Indonesia's rapidly evolving landscape

of internet and computing technology, a
significant shift is observed, with internet users
reaching 205 million as of January 2022,
marking a remarkable 73.7% increase, as
highlighted by DataIndonesia.id [1]. This
exponential growth has notably eased web
application access and significantly
streamlined deployment processes [2], [3].
Deployment, a critical phase involving the
distribution of production applications,
encompasses various challenges such as
installation, server adjustments, and managing
dependencies like operating systems, web
servers, libraries, and databases [4], [5].
Traditional manual deployment methods pose
considerable challenges, prompting the need
for more efficient solutions [6].

In this context, container technology has
emerged as a game-changer, offering
lightweight isolation at the operating system
level and significantly accelerating deployment
processes [7]. Among the various container
management solutions, Podman and Docker
stand out. Docker, based on a client-server
model, hinges on a daemon for communication,
making its performance reliant on the presence
of interdependent components. Conversely,
Podman employs a novel rootless concept,
offering compatibility without necessitating
root access, thus presenting a unique approach
to the container technology [8], [9].

This research aims to delve deeper into
these two prominent container management
tools by conducting a comprehensive analysis
and implementation comparison between
Podman and Docker [9], [10]. What sets this
research apart is its focus on exploring the

http://ejournal.radenintan.ac.id/index.php/IJECS/index
http://dx.doi.org/10.24042/ijecs.v3i2.19860
mailto:khairan.marzuki@universitasbumigora.ac.id
file:///C:/Users/My%20Windows/Downloads/(https:/creativecommons.org/licenses/by-sa/4.0/)

58 Int. J Electron. Commun. Syst , 3 (2) (2023) 57-67

distinct operational frameworks of Podman
and Docker, particularly examining how
Podman's rootless approach contrasts with
Docker's daemon-dependent architecture. This
exploration into the operational nuances and
performance metrics of Podman and Docker is
at the forefront of current research in container
management, marking a significant
contribution to the field.

The methodology involves managing
containers in both Podman and Docker using
VMware Workstation, with CentOS as the host
operating system [9], [11]. The analysis
revolves around three key parameters:
Registry redhat.com, image management, and
user access within the container services [12],
[13], [14]. The research meticulously examines
these parameters, offering insights into the
effectiveness and efficiency of both Podman
and Docker in real-world scenarios.

This research takes a unique angle by
undertaking an in-depth comparative analysis
of Podman and Docker, focusing on critical
aspects such as registry access, image handling,
and user interaction within containers. These
facets have not been thoroughly investigated in
prior studies, making this exploration a
significant stride forward in container
management research. The findings are poised
to illuminate which container management tool
excels in performance, offering invaluable
insights for those embarking on Kubernetes.
Additionally, this study contributes
substantially to understanding Podman's
interoperability with Docker, showcasing the
seamless application of Docker commands and
images in Podman containers. This aspect of the
research enriches the overall knowledge and
understanding of the evolving domain of
container management technologies.

METHOD
In this study, the chosen methodology is

the Network Development Life Cycle (NDLC), a
structured yet flexible approach to network
development. NDLC is renowned for its
adaptability and ease of development, making it
particularly suitable for projects requiring
iterative refinement and testing [15], [16].
While NDLC typically encompasses six stages,
this research strategically focuses on three
specific stages: Analysis, Design, and
Prototyping Simulation.

The decision to concentrate on these
three stages is grounded in their relevance and
efficacy for the study's objectives. The Analysis
stage is crucial for understanding the existing
environment and establishing requirements for
Podman and Docker in container management.
The Design stage allows for conceptualizing
how these container technologies will be
compared and evaluated. Lastly, the
Prototyping Simulation stage is instrumental in
practically implementing the comparison,
enabling hands-on examination, and testing of
the functionalities and performance of Podman
and Docker. This selective application of the
NDLC stages ensures a targeted and efficient
research process, aligning with the study's
focus on comparing and implementing
container management solutions.

Figure 1Network Development Life Cycle

Methodology

At this stage, the author collected data
using a literature study. Namely, the author
read scientific articles, journals, and theses to
obtain information on the comparative analysis
and implementation of Docker and Podman in
Container Management. This stage consists of 2
(two) parts, namely data collection and data
analysis. Where data and theories regarding the
comparison of Docker and Podman are
collected, then the data that has been collected
is analyzed and then processed so that the
author focuses on the analysis and
implementation of the comparison of Podman
and Docker in container management.

Int. J Electron. Commun . Syst , 3 (2) (2023) 57-67 59

Design
This stage consists of 6 (six) stages,

namely designing the components that make
Docker, designing the components that make
up Podman preparing hardware and software,
and IP addressing as support for the testing
process, registering on the official Docker Hub
and Fedoraproject sites.

- Docker Building Components

The components contained in Docker are as
follows [17], [18]:

a) Docker Daemon is a service that runs on
the host Operating System (OS). The
function of the docker daemon is to build,
distribute, and run docker containers.

b) Docker Client is a command line, command
for running docker containers, for
example, create containers, start/stop
containers, delete (destroy), and so on in
the docker daemon.

c) Docker Images is A Docker component in
the form of read-only templates.
Templates are an OS or ISO that has been
installed. Docker images work to create a
docker container, only one docker image,
can make lots of docker containers.

d) A Docker Container is an image that can
packaged, and read-write containers run
on images. A docker container can also be
considered a folder, where this docker
container is created using a docker
container. Every time a Docker container is
saved, a new layer will be formed above the
Docker image or base image.

e) Docker Registry redhat.com is a
distribution repository for a collection of
private and public docker images that can
be accessed via Docker Hub.

- Podman Component Design
Podman is an open-source program
available on all Linux platforms and GitHub
[9], [19]. Podman is a tool for managing
containers that aims to be an alternative to
Docker. Podman is a daemon-less container
program for developing, managing, and
running the Open Container Initiative (OCI)
[20]. The component image below shows
that the redhat.com images registry,
container, image storage, and kernel
communicate directly with the Podman
container via runC. As for components, the
compiler has a Podman container as follows

- Images registry redhat.com. According to
Microsoft.com, it is a service that saves all
images and distributes container images and
dependencies related to the image registry
redhat.com, often called a library.

- Containers: In the inner containers case,
Podman is a container image running or
running by the user.

- Images are like the ISO or operating system
that will be installed and the images in the
container. Where is the image that will run
the container?

- The kernel is the core component of an
operating system. An operating system
works with the kernel, which is responsible
for managing data processing on each
computer device.

Simulation Prototyping At this stage,
configuration installation, IP addressing,
internet connection testing, account
registration, test results, test scenarios, and
test results analysis on each Docker and
Podman container service will be carried out
[21], [22]. Installation and Configuration The
installation and configuration stages are
divided into several stages: installation and
configuration on CentOS 8 Stream, installation
and configuration of Mikrotik CHR, and
installation on Docker containers and Podman
containers [23], [24], [25].

- Installation

Installation on VMware Work Station uses 3
(three) Virtual machines (VM). VM1 (one) is
installed on the first VM with the CentOS 8
Stream host operating system, and Internet
Protocol (IP) addressing configuration on
VMnet 1, located in the Windows adapter
settings. VM1 with IP address
192.168.169.170. Netmask 24, and gateway
192.168.169.254. VM2 (two) is installed by
installing the second VM with the CentOS8
Stream host operating system, and
configuration. The VM2 IP address it has is
192.168.169.175. Netmask 24 and gateway
192.168.169.254.

- Mikrotik Installation and Configuration
VM3 (three) installed Mikrotik CHR 6.49.6.
static IP addressing with the IP gateway
used on the Host Operating System
192.168.169.254/24. On the 3 (three)
VMware workstations that have successfully
installed CentOS, the Docker container and

60 Int. J Electron. Commun. Syst , 3 (2) (2023) 57-67

Podman container are then installed on VM2
and VM1.

- IP Addressing

This stage will carry out Internet Protocol
(IP) addressing on the virtual network in the
Windows adapter settings. The
configuration is on VMnet1.

- Test Connection

At this stage, the author tested the internet
network connection from VM1 (Podman
installation), VM2 (docker installation), and
VM3 (Mikrotik) by accessing the google.com
site service.

Account Registration
- Docker Hub Registration

A previous registration process is carried out
to create a Docker Hub account so that we can
withdraw container images.
- Register Fedoraproject.org

A previous registration process is carried out to
create a fedoraproject.org account so that we
can withdraw container images.

The test scenario stages consist of 3
(three) parameters, namely accessing the
redhat.com registry, images, and users. The
following is the flow of this research trial:
Access the redhat.com registry. The image
below shows that the Docker and Podman
containers will access the redhat.com registry.
docker.io and fedoraproject.org to use the same
command, namely "login registry name
redhat.com".

Figure 2Rules of registry access

The image below shows that 5 trials were
carried out using the image parameters pull,
run, stop, verify, delete container, and delete
images. The images used in the study are Hello-
World, Nginx, Centos, Tomcat, and Fedora. A
pull test was carried out withdrawal of images
with these five images via docker containers
and Podman. Then, the analysis and testing
with run images Nginx using the name
testnginx2 in docker and Podman containers.

No use name, test next, namely stop or stop the
Nginx containers running on the docker and
Podman container services. Trials _ verify
results from the existing container deleted via
docker and Podman containers. Trials, Delete
all containers, both medium ones going on, and
what has been stopped (exited) on docker and
Podman containers. The final test is to delete all
the images downloaded in the docker and
Podman containers.

Analysis

Result

 Testing

Int. J Electron. Commun . Syst , 3 (2) (2023) 57-67 61

 Figure 3Rules of Image

Explanation Test flow The Figure above

shows that testing was carried out with access
to docker and Podman container services with
existing users determined in the picture using
user niki2 and Podman use iki.

RESULTS AND DISCUSSION
In this research, an experiment will be

conducted to access the registry services of
fedoraproject.org and docker.io through both
Docker and Podman containers. The results
indicate that both are capable of accessing the
respective registries. However, a difference is
observed in the Docker container, where a
warning is issued, stating that the Docker
daemon does not encrypt the password. This is
evident in the Figure 4.

Figure 4. Results Access Registry Service

Table 1Results in a Registry Access

Containe
rs

Registry Speed
Resp
onse
time

Docker
docker.io 9.24 mbps

22.75
sec

Fedoraproject.
org

9.24 mbps
20.23

sec

Podman
docker.io

Explanati
on

19.79
Sec

Fedoraproject.
org

Explanati
on

20.20
sec

This research involves accessing the

docker.io and fedoraproject.org registries
through Docker and Podman containers. As
indicated in the table above, accessing docker.io
with an internet speed of 9.24 Mbps takes
slightly longer for Docker, with a time
difference of 2.96 seconds slower than Podman.

Accessing the fedoraproject.org registry
in both Docker and Podman containers at the
same speed requires 20.23 seconds for Docker
and 20.20 seconds for the Podman container.
The difference between the two containers is
only 3 seconds, as Podman defaults with the
fedoraproject.org registry, while Docker does
not, resulting in a slightly longer time. However,
a more exciting aspect of accessing
fedoraproject.org on Docker is the WARNING!

Testing

Analysis

Result

62 Int. J Electron. Commun. Syst , 3 (2) (2023) 57-67

Command, indicating that the password is not
well-encrypted in the Docker daemon (server).
From the analysis of the experiments, it is
concluded that the difference in registry access
at the same speed is minimal, approximately
0.3%, with Podman being faster by 3 seconds.
Therefore, for the registry parameters, Podman
performs better. An experiment was conducted
on Docker and Podman containers to obtain a
comparison of the two containers, as seen in
Table 2.

Table 2. Pull Image

Docker Podman
Image Command Image command
Hello-
World

Docker
pull
images….

Hello-
World

Podman
pull
images….

Centos Docker
pull
images….

Centos Podman
pull
images….

Tomcat Docker
pull
images….

Tomcat Podman
pull
images….

Fedora Docker
pull
images….

Fedora Podman
pull
images….

The analysis results from the table above

are from the command side, where the
commands used are relatively the same, but
this research also conducted research in terms
of speed and response time, as seen in Table 3.

Table 2Pull Image Hello

Contain
ers

Na
me

Siz
e

/k
B

Inter
net

spe
ed

respo
nse

tim
e

Docker

Hell
o-

wor
ld

13.
3

Wifi.i
d

82.6
6

08.05
sec

12.
30

Podma
n

Hell
o-

wor
ld

19.
9

Wifi.i
d

82.6
6

08.07
sec

11:
52

The table 3, states that the volume of

Docker images is smaller than that of Podman,
so withdrawing from Podman takes longer. The
difference is around 0.02%, so the hello-world
docker withdrawal is better.

Table 3Pull Nginx
Contain

ers
Na
me

Size
/kB

Inte
rnet

spe
ed

respo
nse

tim
e

Docker

Ngi
nx

142
Wifi.

id
142

38.10
minut

es

12.
37
WI
TA

Podman
Ngi
nx

146
Wifi.

id
66.1

4

34.30
minut

es

12.
37
WI
TA

The table 4, states that the volume of

Docker images is smaller than that of Podman,
but compared with Podman it has a relatively
short speed compared to Docker with a smaller
image container capacity. The difference occurs
with a difference of 3.20 seconds, so it can be
concluded that Podman is better.

Table 4Pull Centos
Contai

ners
Na
me

Size
/kB

Inte
rnet

spe
ed

respo
nse

tim
e

Docker Cent
os

213 Wifi.
id

76.6
7

30.31
minut

es

13.
05
WI
TA

Podman Cent
os

215 Wifi.
id

76.6
7

28.40
minut

es

13.
05
WI
TA

The table 5, states that the volume of

Docker images is smaller than that of Podman,
but compared with Podman it has a relatively
short speed compared to Docker with a smaller
image container capacity. The difference occurs
with a difference of 1.91 seconds, so it can be
concluded that Podman is better. The
difference is close to 2 seconds.

Table 5Pull Tomcat

Contai
ners

Nam
e

Size
/kB

Inter
net

spee
d

resp
onse

tim
e

Docker
Tom
cat

483
smar
tfren

8.82
1:30:
Minu

te

15.
00
WI
TA

Podma
n

Tom
cat

488
Smar
tfren

8.82
1:28:

4
Min

15.
00
WI
TA

The table 6, states that the volume of
Docker images is smaller than that of Podman.
Of all the images used in this research, Tomcat
is the image with the largest capacity, so it takes
up to hours. The difference is that Podman is
around 2 seconds faster. The capacity of
Podman ISO (images) is larger, namely 5 Mbps.

Int. J Electron. Commun . Syst , 3 (2) (2023) 57-67 63

Table 6Pull Fedora

Contai
ners

Na
me

Si
ze
/k
B

Intern
et

spe
ed

respo
nse

tim
e

Docker
Fed
ora

16
3

smartf
ren

10.0
0

15.46
minut

es

3.5
5

WI
TA

Podma
n

Fed
ora

16
3

Smartf
ren

10.0
0

13.36
minut

es

3.5
5

WI
TA

In this table 7, there is a similarity in

image capacity between Podman and Docker.
Still, in speed, Podman again gets a shorter
speed by a difference of 2.4 seconds, so it is said
that Podman is better than Docker. From all the
pull tests found, it was concluded that if the
registry was the same it would produce images
with relatively the same capacity but the speed
of Podman was superior by around 0.2%, a
slight difference.

The comparison in this research is using
names and IDs on containers. The docker
container service runs with the names
testnginx2 added, while Podman uses neither.
In terms of commands, it can be seen in the
table 8.

Table 7Run Image
DOCKER

COMMAND
PODMAN

COMMAND
ANALYSIS

docker run -
d –name
testnginx2 -
p 80:80
nginx

Podman run -d -
p 80:80 nginx,

Docker uses
names and
Podman does
not

In the testing parameters for this running

stage, differences were found in Podman, which
did not use IDs and names on Nginx containers,
so names were given randomly, as seen in Table
9 of container running verification.

Table 8Run Hello-world

Contai
ners

Na
me

Si
ze
/k
B

Intern
et

spe
ed

respo
nse

tim
e

Docker Hell
o-

wor
ld

13
.3

smartf
ren

8.03 07.64
secon

ds

6.5
0

WI
TA

Podma
n

Hell
o-

wor
ld

19
.9

Smartf
ren

8.03 06.3
secon

ds

7:2
4

WI
TA

After the pull test was carried out, it was
found that Podman only took 1.61 seconds to
run because the capacity of Hello-World was
relatively small. So Podman is faster.

Table 9Run Nginx

Contai
ners

Na
me

Si
ze
/k
B

Inter
net

spe
ed

respo
nse

ti
me

Docker Ngi
nx

14
2

smart
fren

12.
55

04.06
minut

es

72
7

WI
TA

Podma
n

Ngi
nx

14
6

Smart
fren

12.
55

03. 52
minut

es

7:2
7

WI
TA

After pulling the pull test, it was found

that the Podman took only 0.54 seconds. So
Podman is better than Docker. Stop This
research carried out the process of stopping the
Nginx container that was running after testing
docker and Podman and found slight
differences as seen in the table 11.

Table 10Stop Image

DOCKER
COMMAND

PODMAN
COMMAND

ANALYSIS

stop
testnginx2 .

Podman stop
16af050565de

Differences in
ID and Names

stop
testnginx2 .

Podman stop
16af050565de

Differences in
ID and Names

The table 11, shows that the difference is

only in naming and ID, but if you run Podman
and docker the opposite way, for example,
docker with ID and Podman with names can
run. In the testing process, it can be seen that
Docker uses names, and Podman uses IDs. The
output produced by both is the same according
to the command entered.

Table 11Stop Image

Contai
ners

Na
me

Si
ze
/k
B

Inter
net

spe
ed

respo
nse

ti
me

Docker Ngi
nx

14
2

smart
fren

12.
55

01.90
secon

ds

07.
34
WI
TA

Podma
n

Ngi
nx

14
6

Smart
fren

12.
55

1.75
secon

ds
minut

e

7:2
4

WI
TA

64 Int. J Electron. Commun. Syst , 3 (2) (2023) 57-67

After the pull test was carried out, it was
found that the Podman took only 0.25 seconds.
This difference was the slightest difference
produced by the Podman.

The test parameters carried out in this
research were deleting information or displays
from the Nginx container running on the
Docker and Podman containers. The
comparison can be seen in the table 13.

Table 12Delete Container
DOCKER

COMMAND
PODMAN

COMMAND
ANALYSIS

Docker
container rm

testnginx2

Podman rm
16af050565de

Differences in
ID and Names

In the trial of deleting a running

container, it was found that similarities in
terms of syntax were the same as using the "rm
(remove) command."

Table 13Delete Container
Contai

ners
Na
me

Size
/kB

Inte
rnet

spe
ed

respo
nse

tim
e

Docker Ngi
nx

142 sma
rtfre

n

12.6
6

01.45
secon

ds

07.
36
WI
TA

Podma
n

Ngi
nx

146 Sma
rtfre

n

12.6
6

01.00
secon

ds
minut

es

7:3
7

WI
TA

After the pull test was carried out, it was

found that the Podman took only 0.45 minutes
to produce a better Podman. The following
parameter is tested to delete all container
images that have been previously withdrawn.
As seen in the table 15.

Table 14Delete Image
DOCKER

COMMAND
PODMAN

COMMAND
ANALYSIS

Docker system
prune -a

Podman
rmi -a

Differences in
commands

Docker uses the system prune command

to carry out the process of deleting unused data
and objects. Docker cannot run the command
"rmi -a" that is, it is asked to use the help option
to look for the correct command related to
"rmi" because in docker the command cannot
be found. As in the image 5.

Figure 4Delete Image

Meanwhile, in Podman, the system prune

-a command runs, and the output displayed is
the same as that in Docker as seen in Figure 6,
namely the command runs. The author can
conclude that docker commands can be run on
the Podman container.

Figure 5Delete Docker Image

Test parameters try to verify what is
done in research. This covers verification, i.e.,
displays results of image download, results
running containers, and web server access,
including the Image docker images command.
In terms of docker and Podman commands, the
command is the same. The only difference is in
terms of aspects the container just, but the
output is displayed differently where in docker
as in the Figure 7.

Figure 6Verify on Docker

Docker displays the repository related to the
image name while Podman is shown in the
image 8.

Figure 7Verification on Podman

Podman displays the Name from the

container images at a time from the registry
source redhat.com. Which has been
downloaded, so it is possible to do a
downloading return.

The test parameters carried out in this
research include displaying, as the title of this
thesis suggests, management. In terms of

Int. J Electron. Commun . Syst , 3 (2) (2023) 57-67 65

output, it is relatively the same as seen in
Figures 7 and 8. However, in terms of
commands, they are different, but the meaning
is the same. Based on the official Docker
website, explains that previously, the ps -a
verification command was the same as Docker,
but a new command was released, namely
docker container ls -a.

Table 15Delete Image

Contai
ners

Na
me

Si
ze
/k
B

Inter
net

spe
ed

respo
nse

ti
me

Docker Ngi
nx

14
2

smart
fren

12.
66

02.39
secon

ds

05.
40
WI
TA

Podma
n

Ngi
nx

14
6

Smart
fren

12.
66

06. 32
secon

ds
minut

e

5:4
WI
TA

It was found that Podman has a very low

speed when compared to Docker, the difference
is 4.7 minutes. From this, it was found that
docker is better. The results of the analysis of
the image parameters found that the Podman
container was better than the docker container,
the speed of Podman was superior with a
difference of 2 minutes faster than docker. The
images parameter shows that the command
being executed is the same until the verification
test, but then deleted the command starts to
change where the same command cannot run
on docker but on Podman the command runs.
This proves that Podman is compatible with
Docker and also proves that Podman is better
than Docker.

As is known on the official Podman page,
Podman is a container that runs using the
rootless concept but does not rule out the
possibility of running it with root access. At the
trial stage, accessing the Podman service was
carried out using the root service. Docker is a
container service that runs with daemon and
Docker CLI components, but in the test
parameters of this research, container services
were accessed using a predetermined user. The
test results found that the differences in the
user creation process were visible at the trial
stage when the Docker user performed the
installation process again, as when installing
Docker for the first time. However, in Podman,
it is different. Enter the IP of the host Operating

System from VM1 and then log in as in Figure 7
so we can directly access the Podman container.
The following is an analysis of making a user-
accessible to that user.

Table 16Create User
Contain

ers
use

r
Intern

et
spe
ed

respo
nse

tim
e

Docker
Nik
i2

smartf
ren

12.8
2

40.20
minut

es

06.
47
WI
TA

Podman iki
Smartf

ren
12.8

2

05. 30
minut

es

06.
47
WI
TA

By creating a user on both containers, it

can be seen in the table above that Docker can
get the user to the user access stage in a long
time because when creating the user, we have
to run the container to create the user, for
example in this study using Centos. However, it
differs from Podman in that users only need to
run commands without having to run
containers, making Podman faster than Docker.
The time difference is very far, up to 35.10
minutes, so in terms of creating a user until the
user is accessed, Podman is better. The table is
analyzed in terms of container access via
Docker and Podman.

CONCLUSION
Based on the analysis of the trials that

have been carried out, the following
conclusions can be drawn. The first parameter
related to registry access carried out on docker
and Podman containers found that Podman was
better than docker in that there were no
warnings, and required a relatively short time
with the same speed as docker. The second
parameter related to images found that
Podman was slightly superior to Docker with a
time of 2 seconds, however, in terms of delete,
Docker was faster than Podman. They were
overall won by Podman. The last parameter
regarding accessing the container with a
predetermined user was found to be that
Podman was better than Docker. This was
proven by the huge time difference when
Docker took up to 1 (one) or 2 (two) hours but
Docker took minutes to access the container.
Podman. So the overall conclusion is that
Podman is better than docker and the
commands in docker are compatible with
docker. This research has also accessed alpine

66 Int. J Electron. Commun. Syst , 3 (2) (2023) 57-67

images with the docker.io registry on both
containers with a capacity of 5.82MB. The time
used is that Podman is 2 seconds faster with the
same capacity, namely 5.82MB.

REFERENCES

[1] R. M. Akbar and R. R. W. Giri, “Analysis Of
Digital Skill Confirmation Factors In The
Use Of Mobile Banking Services In Bogor
Regency,” Jurnal Ekonomi, vol. 12, no. 04,
pp. 313–326, 2023.

[2] B. Cherinka et al., “Marvin: A tool kit for
streamlined access and visualization of
the SDSS-IV MaNGA data set,” The
Astronomical Journal, vol. 158, no. 2, p. 74,
2019.

[3] A. R. Kunduru, “Cloud BPM Application
(Appian) Robotic Process Automation
Capabilities,” Asian Journal of Research in
Computer Science, vol. 16, no. 3, pp. 267–
280, 2023.

[4] R. Khattar, R. Hales, D. P. Ames, E. J.
Nelson, N. L. Jones, and G. Williams,
“Tethys App Store: Simplifying
deployment of web applications for the
international GEOGloWS initiative,”
Environmental Modelling & Software, vol.
146, p. 105227, 2021.

[5] H. Husain, A. Anggrawan, H. Santoso, H. T.
Sihotang, D. Pyanto, and F. R. Hidayat,
“Pengaturan Bandwidth Management
Dan Time Limitation Berbasis User
Manajer Mikrotik,” Jurnal Mantik Penusa,
vol. 2, no. 2, 2018.

[6] L. Baier, F. Jöhren, and S. Seebacher,
“Challenges in the Deployment and
Operation of Machine Learning in
Practice.,” in ECIS, 2019.

[7] K. Zandberg and E. Baccelli, “Femto-
containers: Devops on microcontrollers
with lightweight virtualization & isolation
for iot software modules,” arXiv preprint
arXiv:2106.12553, 2021.

[8] S. Abraham, A. K. Paul, R. I. S. Khan, and A.
R. Butt, “On the use of containers in high
performance computing environments,”
in 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD),
IEEE, 2020, pp. 284–293.

[9] S. Kaiser, M. S. Haq, A. Ş. Tosun, and T.
Korkmaz, “Container technologies for
ARM architecture: A comprehensive
survey of the state-of-the-art,” IEEE
Access, 2022.

[10] S. Kaiser, A. Ş. Tosun, and T. Korkmaz,
“Benchmarking Container Technologies
on ARM-Based Edge Devices,” IEEE
Access, 2023.

[11] B. Ward, “SQL Server 2022 on Linux,
Containers, and Kubernetes,” in SQL
Server 2022 Revealed: A Hybrid Data
Platform Powered by Security,
Performance, and Availability, Springer,
2022, pp. 389–412.

[12] S. Kadri, A. Sboner, A. Sigaras, and S. Roy,
“Containers in bioinformatics:
applications, practical considerations,
and best practices in molecular
pathology,” The Journal of molecular
diagnostics, vol. 24, no. 5, pp. 442–454,
2022.

[13] A. K. Mishra, E. S. Pilli, and M. C. Govil,
“CONTAIN4n6: a systematic evaluation of
container artifacts,” Journal of Cloud
Computing, vol. 11, no. 1, pp. 1–14, 2022.

[14] V. T. Tran, “Maintaining Linux
Repositories For Closed Network
Infrastructure,” 2023.

[15] D. Siswanto, G. Priyandoko, N. Tjahjono, R.
S. Putri, N. B. Sabela, and M. I. Muzakki,
“Development of Information and
Communication Technology
Infrastructure in School using an
Approach of the Network Development
Life Cycle Method,” in Journal of Physics:
Conference Series, IOP Publishing, 2021, p.
12026.

[16] I. Kamu, M. T. Parinsi, M. W. Kuhu, and A.
V. Mananggel, “Computer Network Design
in Vocational School Using Network
Simulator,” International Journal of
Information Technology and Education,
vol. 2, no. 1, pp. 22–31, 2022.

[17] A. M. Potdar, D. G. Narayan, S. Kengond,
and M. M. Mulla, “Performance evaluation
of docker container and virtual machine,”
Procedia Computer Science, vol. 171, pp.
1419–1428, 2020.

[18] I. Miell and A. Sayers, Docker in practice.
Simon and Schuster, 2019.

[19] F. Björklund, “A comparison between
native and secure runtimes: Using
Podman to compare crun and Kata
Containers.” 2021.

[20] S. Giallorenzo, J. Mauro, M. G. Poulsen, and
F. Siroky, “Virtualization costs:
benchmarking containers and virtual
machines against bare-metal,” SN

Int. J Electron. Commun . Syst , 3 (2) (2023) 57-67 67

Computer Science, vol. 2, no. 5, p. 404,
2021.

[21] S. Prabakaran et al., “Predicting attack
pattern via machine learning by
exploiting stateful firewall as virtual
network function in an SDN network,”
Sensors, vol. 22, no. 3, p. 709, 2022.

[22] K. Voulgaris et al., “A Comparison of
Container Systems for Machine Learning
Scenarios: Docker and Podman,”
presented at the 2022 2nd International
Conference on Computers and
Automation (CompAuto), IEEE, 2022, pp.
114–118.

[23] D. P. VS, S. C. Sethuraman, and M. K. Khan,
“Container Security: Precaution levels,
Mitigation Strategies, and Research
Perspectives,” Computers & Security, p.
103490, 2023.

[24] R. Keller Tesser and E. Borin, “Containers
in HPC: a survey,” The Journal of
Supercomputing, vol. 79, no. 5, pp. 5759–
5827, 2023.

[25] R. Kałaska and P. Czarnul, “Investigation
of Performance and Configuration of a
Selected IoT System—Middleware
Deployment Benchmarking and
Recommendations,” Applied Sciences, vol.
12, no. 10, p. 5212, 2022.

