FUZZY MAMDANI EXPERT SYSTEM FOR PROPERNESS OF SELECTING SUPPLIER IN CORPORATE XYZ

Hendriyanto Hendriyanto , Bei Harira Irawan , Deddy Prihadi , Indah Hartati

Abstract


This research aims to enhance the supplier selection process at Corporate XYZ by implementing the Fuzzy Mamdani Expert System, which addresses the complexities of evaluating suppliers in a service-oriented business environment. The study employs a fuzzy logic approach to assess suppliers based on multiple qualitative and quantitative criteria, including cost efficiency, reliability, and scalability. The methodology involves fuzzification of input data, rule base evaluation, and the application of the Mamdani inference system to derive crisp scores for each supplier. The findings indicate that Supplier A scored 85 points, outperforming Supplier B, which scored 70 points, highlighting the effectiveness of the evaluation process. Additionally, the research identifies potential risks associated with suppliers, such as pending legal documentation, which could impact their overall scores. The conclusion emphasizes that the Fuzzy Mamdani Expert System not only facilitates informed decision-making in supplier selection but also fosters continuous improvement through a feedback loop mechanism. This study contributes to the field of supply chain management by demonstrating the applicability of fuzzy logic in optimizing supplier evaluations, ultimately leading to better supplier relationships and cost efficiencies for organizations. Future research is suggested to explore the integration of additional criteria and advanced analytical techniques.

Full Text:

PDF

References


A. D. Riyanto, H. Marcos, Z. Karini, and K. M. Amin, “Fuzzy logic implementation to optimize multiple inventories on micro small medium enterprises using mamdani method (Case Study: Pekanita, Kroya, Cilacap),” in 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta: IEEE, Nov. 2017, pp. 261–266. doi: 10.1109/ICITISEE.2017.8285508.

S. Mangngenre, S. Bahri, F. Mardin, R. Hanafi, S. Asmal, and M. F. Fasra, “Modeling of the production size using Fuzzy-Mamdani Logic to support green engineering: A zinc sheets industrial case study,” IOP Conf. Ser.: Earth Environ. Sci., vol. 343, no. 1, p. 012009, Oct. 2019, doi: 10.1088/1755-1315/343/1/012009.

V. A. C. C. Almeida, R. De Andrade L. Rabelo, J. R. M. Viana, and L. F. Maia, “A model based on fuzzy control systems to support the development of pervasive mobile games,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB: IEEE, Oct. 2017, pp. 635–640. doi: 10.1109/SMC.2017.8122678.

Z. Harir, I. B. K. Widiartha, and R. Afwani, “Aplikasi Pertimbangan Wisata di Pulau Lombok dengan Metode Fuzzy Mamdani & Algoritma Genetika,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, p. 1261, 2020, doi: 10.25126/jtiik.2020721197.

O. Kisi, “Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration,” Journal of Hydrology, vol. 504, pp. 160–170, Nov. 2013, doi: 10.1016/j.jhydrol.2013.09.043.

I. Kafiev, P. Romanov, and I. Romanova, “Control System of a Robotic Irrigation Machine Based on the Mamdani Fuzzy Algorithm,” J. Phys.: Conf. Ser., vol. 2096, no. 1, p. 012014, Nov. 2021, doi: 10.1088/1742-6596/2096/1/012014.

I. Kafiev, P. Romanov, and I. Romanova, “Control System of Portal Car Wash based on the Mamdani Fuzzy Algorithm,” in 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia: IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/FarEastCon50210.2020.9271487.

C. A. Pinto, J. T. Farinha, S. Singh, and H. Raposo, “Increasing the Reliability of an Electrical Power System in a Big European Hospital through the Petri Nets and Fuzzy Inference System Mamdani Modelling,” 2021.

B. Prasetyo, F. S. Aziz, A. N. Handayani, A. Priharta, and A. I. Bin Che Ani, “Lux and current analysis on lab-scale smart grid system using Mamdani fuzzy logic controller,” J. Mechatron. Electr. Power Veh. Technol., vol. 11, no. 1, pp. 11–21, Jul. 2020, doi: 10.14203/j.mev.2020.v11.11-21.

A. Selvaraj, S. Saravanan, and J. J. Jennifer, “Mamdani fuzzy based decision support system for prediction of groundwater quality: an application of soft computing in water resources,” Environ Sci Pollut Res, vol. 27, no. 20, pp. 25535–25552, Jul. 2020, doi: 10.1007/s11356-020-08803-3.

W. Wawan, M. Zuniati, and A. Setiawan, “Optimization of National Rice Production with Fuzzy Logic using Mamdani Method,” J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 1, pp. 36–43, Jan. 2021, doi: 10.47352/jmans.v1i1.3.

M. Nazari, M. Nazari, and M. Hadi Noori Skandari, “Pseudo-spectral method for controlling the drug dosage in cancer,” IET Systems Biology, vol. 14, no. 5, pp. 241–251, 2020, doi: 10.1049/iet-syb.2020.0054.

K. Faqih, W. Primadi, A. N. Handayani, A. Priharta, and K. Arai, “Smart grid photovoltaic system pilot scale using sunlight intensity and state of charge (SoC) battery based on Mamdani fuzzy logic control,” J. Mechatron. Electr. Power Veh. Technol., vol. 10, no. 1, pp. 36–47, Dec. 2019, doi: 10.14203/j.mev.2019.v10.36-47.

R. Rustum et al., “Sustainability Ranking of Desalination Plants Using Mamdani Fuzzy Logic Inference Systems,” Sustainability, vol. 12, no. 2, p. 631, Jan. 2020, doi: 10.3390/su12020631.

E. Pourjavad and A. Shahin, “The Application of Mamdani Fuzzy Inference System in Evaluating Green Supply Chain Management Performance,” Int. J. Fuzzy Syst., vol. 20, no. 3, pp. 901–912, Mar. 2018, doi: 10.1007/s40815-017-0378-y.

J. H. Jiang, C. J. Xu, and X. Zheng, “A study on supplier evaluation in product research & development based on agile manufacture,” International Conference on Natural Computation, ICNC 2009, vol. 1, pp. 50–54, 2009, doi: 10.1109/ICNC.2009.515.

M. Shokouhifar, M. Mohammad, and N. Pilevari, “Transfusion and Apheresis Science Inventory management in blood supply chain considering fuzzy supply / demand uncertainties and lateral transshipment,” Transfusion and Apheresis Science, vol. 60, no. 3, p. 103103, 2021, doi: 10.1016/j.transci.2021.103103.

Q. Zhang, K. Li, and J. Yu, “Application of Multi-AGENT System On WEB-BASED Data Warehouse for Pricing System of Power Supplier,” in 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, Georgia, USA: IEEE, 2006, pp. 1464–1470. doi: 10.1109/PSCE.2006.296517.

M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative Data Analysis. USA: Sage Publications, 2014.

D. R. P. Gulo, “Information System Design in Predicting Production Quantity with the Monte Carlo Method,” jcsitech, pp. 17–21, Jan. 2022, doi: 10.35134/jcsitech.v8i1.28.




DOI: http://dx.doi.org/10.24042/aisj.v2i1.23528

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hendriyanto Hendriyanto, Bei Harira Irawan, Deddy Prihadi, Indah Hartati

License URL: https://creativecommons.org/licenses/by-sa/4.0

Office and Secretariat:

The Office of AISJ, Faculty of Science and Technology's Building (2nd Floor)

Universitas Islam Negeri Raden Intan Lampung, Indonesia. Endro Suratmin Street, No.1 Sukarame Bandar Lampung. Postal Code: 35131
Email: aisj@radenintan.ac.id
e-Journal: http://ejournal.radenintan.ac.id/index.php/AISJ/index


Asia Information System Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Published By Universitas Islam Negeri Raden Intan Lampung. e-ISSN 2963-8593

 

Journal Indexing:

ISSN | Google Scholar | Garuda | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus

 

 

Contact Admin :